File: vtkRecursiveSphereDirectionEncoder.h

package info (click to toggle)
vtk7 7.1.1%2Bdfsg2-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 127,396 kB
  • sloc: cpp: 1,539,584; ansic: 124,382; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 126; objc: 83
file content (126 lines) | stat: -rw-r--r-- 4,443 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkRecursiveSphereDirectionEncoder.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/

/**
 * @class   vtkRecursiveSphereDirectionEncoder
 * @brief   A direction encoder based on the recursive subdivision of an octahedron
 *
 * vtkRecursiveSphereDirectionEncoder is a direction encoder which uses the
 * vertices of a recursive subdivision of an octahedron (with the vertices
 * pushed out onto the surface of an enclosing sphere) to encode directions
 * into a two byte value.
 *
 * @sa
 * vtkDirectionEncoder
*/

#ifndef vtkRecursiveSphereDirectionEncoder_h
#define vtkRecursiveSphereDirectionEncoder_h

#include "vtkRenderingVolumeModule.h" // For export macro
#include "vtkDirectionEncoder.h"

class VTKRENDERINGVOLUME_EXPORT vtkRecursiveSphereDirectionEncoder : public vtkDirectionEncoder
{
public:
  vtkTypeMacro(vtkRecursiveSphereDirectionEncoder,vtkDirectionEncoder);
  void PrintSelf( ostream& os, vtkIndent indent );

/**
 * Construct the object. Initialize the index table which will be
 * used to map the normal into a patch on the recursively subdivided
 * sphere.
 */
  static vtkRecursiveSphereDirectionEncoder *New();


  /**
   * Given a normal vector n, return the encoded direction
   */
  int GetEncodedDirection( float n[3] );

  /**
   * / Given an encoded value, return a pointer to the normal vector
   */
  float *GetDecodedGradient( int value );

  /**
   * Return the number of encoded directions
   */
  int GetNumberOfEncodedDirections( void );

  /**
   * Get the decoded gradient table. There are
   * this->GetNumberOfEncodedDirections() entries in the table, each
   * containing a normal (direction) vector. This is a flat structure -
   * 3 times the number of directions floats in an array.
   */
  float *GetDecodedGradientTable( void );

  //@{
  /**
   * Set / Get the recursion depth for the subdivision. This
   * indicates how many time one triangle on the initial 8-sided
   * sphere model is replaced by four triangles formed by connecting
   * triangle edge midpoints. A recursion level of 0 yields 8 triangles
   * with 6 unique vertices. The normals are the vectors from the
   * sphere center through the vertices. The number of directions
   * will be 11 since the four normals with 0 z values will be
   * duplicated in the table - once with +0 values and the other
   * time with -0 values, and an addition index will be used to
   * represent the (0,0,0) normal. If we instead choose a recursion
   * level of 6 (the maximum that can fit within 2 bytes) the number
   * of directions is 16643, with 16386 unique directions and a
   * zero normal.
   */
  vtkSetClampMacro( RecursionDepth, int, 0, 6 );
  vtkGetMacro( RecursionDepth, int );
  //@}

protected:
  vtkRecursiveSphereDirectionEncoder();
  ~vtkRecursiveSphereDirectionEncoder();

  // How far to recursively divide the sphere
  int                     RecursionDepth;

  // The index table which maps (x,y) position in the rotated grid
  // to an encoded normal
  //int                   IndexTable[2*NORM_SQR_SIZE - 1][2*NORM_SQR_SIZE -1];
  int                     *IndexTable;

  // This is a table that maps encoded normal (2 byte value) to a
  // normal (dx, dy, dz)
  //float                 DecodedNormal[3*(1 + 2*(NORM_SQR_SIZE*NORM_SQR_SIZE+
  //                             (NORM_SQR_SIZE-1)*(NORM_SQR_SIZE-1)))];
  float                   *DecodedNormal;

  // Method to initialize the index table and variable that
  // stored the recursion depth the last time the table was
  // built
  void                  InitializeIndexTable( void );
  int                   IndexTableRecursionDepth;

  int                   OuterSize;
  int                   InnerSize;
  int                   GridSize;
private:
  vtkRecursiveSphereDirectionEncoder(const vtkRecursiveSphereDirectionEncoder&) VTK_DELETE_FUNCTION;
  void operator=(const vtkRecursiveSphereDirectionEncoder&) VTK_DELETE_FUNCTION;
};


#endif