File: algorithms.py

package info (click to toggle)
vtk7 7.1.1%2Bdfsg2-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 127,396 kB
  • sloc: cpp: 1,539,584; ansic: 124,382; python: 78,038; tcl: 47,013; xml: 8,142; yacc: 5,040; java: 4,439; perl: 3,132; lex: 1,926; sh: 1,500; makefile: 126; objc: 83
file content (1231 lines) | stat: -rw-r--r-- 46,229 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
"""
This module provides a number of algorithms that can be used with
the dataset classes defined in the dataset_adapter module.
See the documentation of the dataset_adapter for some examples.
These algorithms work in serial and in parallel as long as the
data is partitioned according to VTK data parallel execution
guidelines. For details, see the documentation of individual
algorithms.
"""
from __future__ import absolute_import
import sys

try:
    import numpy
except ImportError:
    raise RuntimeError("This module depends on the numpy module. Please make\
sure that it is installed properly.")

from . import dataset_adapter as dsa
from . import internal_algorithms as algs
import itertools
try:
    from vtk.vtkParallelCore import vtkMultiProcessController
    from vtk.vtkParallelMPI4Py import vtkMPI4PyCommunicator
except ImportError:
    vtkMultiProcessController = None
    vtkMPI4PyCommunicator = None

if sys.hexversion < 0x03000000:
    izip = itertools.izip
else:
    izip = zip

def _apply_func2(func, array, args):
    """Apply a function to each member of a VTKCompositeDataArray.
    Returns a list of arrays.

    Note that this function is mainly for internal use by this module."""
    if array is dsa.NoneArray:
        return []
    res = []
    for a in array.Arrays:
        if a is dsa.NoneArray:
            res.append(dsa.NoneArray)
        else:
            res.append(func(a, *args))
    return res

def apply_ufunc(func, array, args=()):
    """Apply a function to each member of a VTKCompositeDataArray.
    VTKArray and numpy arrays are also supported."""
    if array is dsa.NoneArray:
        return dsa.NoneArray
    elif type(array) == dsa.VTKCompositeDataArray:
        return dsa.VTKCompositeDataArray(_apply_func2(func, array, args), dataset = array.DataSet)
    else:
        return func(array)

def _make_ufunc(ufunc):
    """ Given a ufunc, creates a closure that applies it to each member
    of a VTKCompositeDataArray.

    Note that this function is mainly for internal use by this module."""
    def new_ufunc(array):
        return apply_ufunc(ufunc, array, ())
    return new_ufunc

def apply_dfunc(dfunc, array1, val2):
    """Apply a two argument function to each member of a VTKCompositeDataArray
    and another argument The second argument can be a VTKCompositeDataArray, in
    which case a one-to-one match between arrays is assumed. Otherwise, the
    function is applied to the composite array with the second argument repeated.
    VTKArray and numpy arrays are also supported."""
    if type(array1) == dsa.VTKCompositeDataArray and type(val2) == dsa.VTKCompositeDataArray:
        res = []
        for a1, a2 in izip(array1.Arrays, val2.Arrays):
            if a1 is dsa.NoneArray or a2 is dsa.NoneArray:
                res.append(dsa.NoneArray)
            else:
                l = dsa.reshape_append_ones(a1, a2)
                res.append(dfunc(l[0], l[1]))
        return dsa.VTKCompositeDataArray(res, dataset = array1.DataSet)
    elif type(array1) == dsa.VTKCompositeDataArray:
        res = []
        for a in array1.Arrays :
            if a is dsa.NoneArray:
                res.append(dsa.NoneArray)
            else:
                l = dsa.reshape_append_ones(a, val2)
                res.append(dfunc(l[0], l[1]))
        return dsa.VTKCompositeDataArray(res, dataset = array1.DataSet)
    elif array1 is dsa.NoneArray:
        return dsa.NoneArray
    else:
        l = dsa.reshape_append_ones(array1, val2)
        return dfunc(l[0], l[1])

def _make_dfunc(dfunc):
    """ Given a function that requires two arguments, creates a closure that
    applies it to each member of a VTKCompositeDataArray.

    Note that this function is mainly for internal use by this module."""
    def new_dfunc(array1, val2):
        return apply_dfunc(dfunc, array1, val2)
    return new_dfunc

def _make_dsfunc(dsfunc):
    """ Given a function that requires two arguments (one array, one dataset),
    creates a closure that applies it to each member of a VTKCompositeDataArray.
    Note that this function is mainly for internal use by this module."""
    def new_dsfunc(array, ds=None):
        if type(array) == dsa.VTKCompositeDataArray:
            res = []
            for a in array.Arrays:
                if a is dsa.NoneArray:
                    res.append(dsa.NoneArray)
                else:
                    res.append(dsfunc(a, ds))
            return dsa.VTKCompositeDataArray(res, dataset = array.DataSet)
        elif array is dsa.NoneArray:
            return dsa.NoneArray
        else:
            return dsfunc(array, ds)
    return new_dsfunc

def _make_dsfunc2(dsfunc):
    """ Given a function that requires a dataset, creates a closure that
    applies it to each member of a VTKCompositeDataArray.

    Note that this function is mainly for internal use by this module."""
    def new_dsfunc2(ds):
        if type(ds) == dsa.CompositeDataSet:
            res = []
            for dataset in ds:
                res.append(dsfunc(dataset))
            return dsa.VTKCompositeDataArray(res, dataset = ds)
        else:
            return dsfunc(ds)
    return new_dsfunc2

def _lookup_mpi_type(ntype):
    from mpi4py import MPI
    if ntype == numpy.bool:
        typecode = 'b'
    else:
        typecode = numpy.dtype(ntype).char
    return MPI.__TypeDict__[typecode]

def _reduce_dims(array, comm):
    from mpi4py import MPI
    dims = numpy.array([0, 0], dtype=numpy.int32)
    if array is not dsa.NoneArray:
        shp = shape(array)
        if len(shp) == 0:
            dims = numpy.array([1, 0], dtype=numpy.int32)
        elif len(shp) == 1:
            dims = numpy.array([shp[0], 0], dtype=numpy.int32)
        else:
            dims = numpy.array(shp, dtype=numpy.int32)
    max_dims = numpy.array(dims, dtype=numpy.int32)
    mpitype = _lookup_mpi_type(numpy.int32)
    comm.Allreduce([dims, mpitype], [max_dims, mpitype], MPI.MAX)

    if max_dims[1] == 0:
        max_dims = numpy.array((max_dims[0],))
        size = max_dims[0]
    else:
        size = max_dims[0]*max_dims[1]

    if max_dims[0] == 1:
        max_dims = 1

    return (max_dims, size)

def _global_func(impl, array, axis, controller):
    if type(array) == dsa.VTKCompositeDataArray:
        if axis is None or axis == 0:
            res = impl.serial_composite(array, axis)
        else:
            res = apply_ufunc(impl.op(), array, (axis,))
    else:
        res = impl.op()(array, axis)
        if res is not dsa.NoneArray:
            res = res.astype(numpy.float64)

    if axis is None or axis == 0:
        if controller is None and vtkMultiProcessController is not None:
            controller = vtkMultiProcessController.GetGlobalController()
        if controller and controller.IsA("vtkMPIController"):
            from mpi4py import MPI
            comm = vtkMPI4PyCommunicator.ConvertToPython(controller.GetCommunicator())

            max_dims, size = _reduce_dims(res, comm)

            # All NoneArrays
            if size == 0:
                return dsa.NoneArray;

            if res is dsa.NoneArray:
                if max_dims == 1:
                    # Weird trick to make the array look like a scalar
                    max_dims = ()
                res = numpy.empty(max_dims)
                res.fill(impl.default())

            res_recv = numpy.array(res)
            mpi_type = _lookup_mpi_type(res.dtype)
            comm.Allreduce([res, mpi_type], [res_recv, mpi_type], impl.mpi_op())
            if array is dsa.NoneArray:
                return dsa.NoneArray
            res = res_recv

    return res

def bitwise_or(array1, array2):
    """Implements element by element or (bitwise, | in C/C++) operation.
    If one of the arrays is a NoneArray, this will return the array
    that is not NoneArray, treating NoneArray as 0 in the or operation."""
    if type(array1) == dsa.VTKCompositeDataArray and type(array2) == dsa.VTKCompositeDataArray:
        res = []
        for a1, a2 in izip(array1.Arrays, array2.Arrays):
            l = dsa.reshape_append_ones(a1, a2)
            res.append(bitwise_or(l[0], l[1]))
        return dsa.VTKCompositeDataArray(res, dataset = array1.DataSet)
    elif type(array1) == dsa.VTKCompositeDataArray:
        res = []
        for a in array1.Arrays :
            l = dsa.reshape_append_ones(a, array2)
            res.append(bitwise_or(l[0], l[1]))
        return dsa.VTKCompositeDataArray(res, dataset = array1.DataSet)
    elif array1 is dsa.NoneArray:
        return array2
    elif array2 is dsa.NoneArray:
        return array1
    else:
        l = dsa.reshape_append_ones(array1, array2)
        return numpy.bitwise_or(l[0], l[1])

def make_point_mask_from_NaNs(dataset, array):
    """This method will create a ghost array corresponding to an
    input with NaN values. For each NaN value, the output array will
    have a corresponding value of vtk.vtkDataSetAttributes.HIDDENPOINT.
    These values are also combined with any ghost values that the
    dataset may have."""
    from vtk import vtkDataSetAttributes
    ghosts = dataset.PointData[vtkDataSetAttributes.GhostArrayName()]
    return make_mask_from_NaNs(array, ghosts)

def make_cell_mask_from_NaNs(dataset, array):
    """This method will create a ghost array corresponding to an
    input with NaN values. For each NaN value, the output array will
    have a corresponding value of vtk.vtkDataSetAttributes.HIDDENCELL.
    These values are also combined with any ghost values that the
    dataset may have."""
    from vtk import vtkDataSetAttributes
    ghosts = dataset.CellData[vtkDataSetAttributes.GhostArrayName()]
    return make_mask_from_NaNs(array, ghosts, True)

def make_mask_from_NaNs(array, ghost_array=dsa.NoneArray, is_cell=False):
    """This method will create a ghost array corresponding to an
    input with NaN values. For each NaN value, the output array will
    have a corresponding value of vtk.vtkDataSetAttributes.HIDDENPOINT or
    HIDDENCELL is the is_cell argument is true. If an input ghost_array
    is passed, the array is bitwise_or'ed with it, simply adding
    the new ghost values to it."""
    from vtk import vtkDataSetAttributes
    if is_cell:
        mask_value = vtkDataSetAttributes.HIDDENCELL
    else:
        mask_value = vtkDataSetAttributes.HIDDENPOINT

    return bitwise_or(isnan(array).astype(numpy.uint8) * mask_value,
        ghost_array)

def sum(array, axis=None, controller=None):
    """Returns the sum of all values along a particular axis (dimension).
    Given an array of m tuples and n components:
    * Default is to return the sum of all values in an array.
    * axis=0: Sum values of all components and return a one tuple,
      n-component array.
    * axis=1: Sum values of all components of each tuple and return an
      m-tuple, 1-component array.

    When called in parallel, this function will sum across processes
    when a controller argument is passed or the global controller is
    defined. To disable parallel summing when running in parallel, pass
    a dummy controller as follows:

    sum(array, controller=vtk.vtkDummyController()).
    """
    class SumImpl:
        def op(self):
            return algs.sum

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.SUM

        def serial_composite(self, array, axis):
            res = None
            arrays = array.Arrays
            for a in arrays:
                if a is not dsa.NoneArray:
                    if res is None:
                        res = algs.sum(a, axis).astype(numpy.float64)
                    else:
                        res += algs.sum(a, axis)
            return res

        def default(self):
            return numpy.float64(0)

    return _global_func(SumImpl(), array, axis, controller)

def max(array, axis=None, controller=None):
    """Returns the max of all values along a particular axis (dimension).
    Given an array of m tuples and n components:
    * Default is to return the max of all values in an array.
    * axis=0: Return the max values of all tuples and return a
      one tuple, n-component array.
    * axis=1: Return the max values of all components of each tuple
      and return an m-tuple, 1-component array.

    When called in parallel, this function will compute the max across
    processes when a controller argument is passed or the global controller
    is defined. To disable parallel summing when running in parallel, pass a
    dummy controller as follows:

    max(array, controller=vtk.vtkDummyController()).
    """
    class MaxImpl:
        def op(self):
            return algs.max

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.MAX

        def serial_composite(self, array, axis):
            res = _apply_func2(algs.max, array, (axis,))
            clean_list = []
            for a in res:
                if a is not dsa.NoneArray:
                    clean_list.append(a)
            if clean_list is []:
                return None
            return algs.max(clean_list, axis=0).astype(numpy.float64)

        def default(self):
            return numpy.finfo(numpy.float64).min

    return _global_func(MaxImpl(), array, axis, controller)

def min(array, axis=None, controller=None):
    """Returns the min of all values along a particular axis (dimension).
    Given an array of m tuples and n components:
    * Default is to return the min of all values in an array.
    * axis=0: Return the min values of all tuples and return a one
      tuple, n-component array.
    * axis=1: Return the min values of all components of each tuple and
      return an m-tuple, 1-component array.

    When called in parallel, this function will compute the min across processes
    when a controller argument is passed or the global controller is defined.
    To disable parallel summing when running in parallel, pass a dummy controller as follows:

    min(array, controller=vtk.vtkDummyController()).
    """
    class MinImpl:
        def op(self):
            return algs.min

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.MIN

        def serial_composite(self, array, axis):
            res = _apply_func2(algs.min, array, (axis,))
            clean_list = []
            for a in res:
                if a is not dsa.NoneArray:
                    clean_list.append(a)
            if clean_list is []:
                return None
            return algs.min(clean_list, axis=0).astype(numpy.float64)

        def default(self):
            return numpy.finfo(numpy.float64).max

    return _global_func(MinImpl(), array, axis, controller)

def _global_per_block(impl, array, axis=None, controller=None):
    if axis > 0:
        return impl.op()(array, axis=axis, controller=controller)

    try:
        dataset = array.DataSet
    except AttributeError:
        dataset = None

    t = type(array)
    if t == dsa.VTKArray or t == numpy.ndarray:
        from vtk.vtkCommonDataModel import vtkMultiBlockDataSet
        array = dsa.VTKCompositeDataArray([array])
        ds = vtkMultiBlockDataSet()
        ds.SetBlock(0, dataset.VTKObject)
        dataset = ds

    results = _apply_func2(impl.op2(), array, (axis,))

    if controller is None and vtkMultiProcessController is not None:
        controller = vtkMultiProcessController.GetGlobalController()
    if controller and controller.IsA("vtkMPIController"):
        from mpi4py import MPI
        comm = vtkMPI4PyCommunicator.ConvertToPython(controller.GetCommunicator())

        # First determine the number of components to use
        # for reduction
        res = dsa.NoneArray
        for res in results:
            if res is not dsa.NoneArray:
                break

        max_dims, size = _reduce_dims(res, comm)

        # All NoneArrays
        if size == 0:
            return dsa.NoneArray;

        # Next determine the max id to use for reduction
        # operations

        # Get all ids from dataset, including empty ones.
        ids = []
        lmax_id = numpy.int32(0)
        if dataset is not None:
            it = dataset.NewIterator()
            it.UnRegister(None)
            it.SetSkipEmptyNodes(False)
            while not it.IsDoneWithTraversal():
                _id = it.GetCurrentFlatIndex()
                lmax_id = numpy.max((lmax_id, _id)).astype(numpy.int32)
                if it.GetCurrentDataObject() is not None:
                    ids.append(_id)
                it.GoToNextItem()
        max_id = numpy.array(0, dtype=numpy.int32)
        mpitype = _lookup_mpi_type(numpy.int32)
        comm.Allreduce([lmax_id, mpitype], [max_id, mpitype], MPI.MAX)

        has_ids = numpy.zeros(max_id+1, dtype=numpy.int32)
        for _id in ids:
            has_ids[_id] = 1
        id_count = numpy.array(has_ids)
        comm.Allreduce([has_ids, mpitype], [id_count, mpitype], MPI.SUM)

        if numpy.all(id_count <= 1):
            return dsa.VTKCompositeDataArray(results, dataset=dataset)

        # Now that we know which blocks are shared by more than
        # 1 rank. The ones that have a count of 2 or more.
        reduce_ids = []
        for _id in xrange(len(id_count)):
            if id_count[_id] > 1:
                reduce_ids.append(_id)

        to_reduce = len(reduce_ids)
        # If not block is shared, short circuit. No need to
        # communicate any more.
        if to_reduce == 0:
            return dsa.VTKCompositeDataArray(results, dataset=dataset)

        # Create the local array that will be used for
        # reduction. Set it to a value that won't effect
        # the reduction.
        lresults = numpy.empty(size*to_reduce)
        lresults.fill(impl.default())

        # Just get non-empty ids. Doing this again in case
        # the traversal above results in a different order.
        # We need the same order since we'll use izip below.
        if dataset is not None:
            it = dataset.NewIterator()
            it.UnRegister(None)
            ids = []
            while not it.IsDoneWithTraversal():
                ids.append(it.GetCurrentFlatIndex())
                it.GoToNextItem()

        # Fill the local array with available values.
        for _id, _res in izip(ids, results):
            success = True
            try:
                loc = reduce_ids.index(_id)
            except ValueError:
                success = False
            if success:
                if _res is not dsa.NoneArray:
                    lresults[loc*size:(loc+1)*size] = _res.flatten()

        # Now do the MPI reduction.
        rresults = numpy.array(lresults)
        mpitype = _lookup_mpi_type(numpy.double)
        comm.Allreduce([lresults, mpitype], [rresults, mpitype], impl.mpi_op())

        if array is dsa.NoneArray:
            return dsa.NoneArray

        # Fill in the reduced values.
        for i in xrange(to_reduce):
            _id = reduce_ids[i]
            success = True
            try:
                loc = ids.index(_id)
            except ValueError:
                success = False
            if success:
                if size == 1:
                    results[loc] = dsa.VTKArray(rresults[i])
                else:
                    results[loc] = rresults[i*size:(i+1)*size].reshape(max_dims)

    return dsa.VTKCompositeDataArray(results, dataset=dataset)

def sum_per_block(array, axis=None, controller=None):
    """Returns the sum of all values along a particular axis (dimension) for
    each block of an VTKCompositeDataArray.

    Given an array of m tuples and n components:
    * Default is to return the sum of all values in an array.
    * axis=0: Sum values of all components and return a one tuple,
      n-component array.
    * axis=1: Sum values of all components of each tuple and return an
      m-tuple, 1-component array.

    When called in parallel, this function will sum across processes
    when a controller argument is passed or the global controller is
    defined. To disable parallel summing when running in parallel, pass
    a dummy controller as follows:

    sum_per_block(array, controller=vtk.vtkDummyController()).
    """
    class SumPerBlockImpl:
        def op(self):
            return sum

        def op2(self):
            return algs.sum

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.SUM

        def default(self):
            return numpy.float64(0)

    return _global_per_block(SumPerBlockImpl(), array, axis, controller)

def count_per_block(array, axis=None, controller=None):
    """Return the number of elements of each block in a VTKCompositeDataArray
    along an axis.

    - if axis is None, the number of all elements (ntuples * ncomponents) is
    returned.
    - if axis is 0, the number of tuples is returned.
    """

    if axis > 0:
        raise ValueError("Only axis=None and axis=0 are supported for count")

    class CountPerBlockImpl:
        def op(self):
            return _array_count

        def op2(self):
            return _local_array_count

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.SUM

        def default(self):
            return numpy.float64(0)

    return _global_per_block(CountPerBlockImpl(), array, axis, controller)

def mean_per_block(array, axis=None, controller=None):
    """Returns the mean of all values along a particular axis (dimension)
    for each block of a VTKCompositeDataArray.

    Given an array of m tuples and n components:
    * Default is to return the mean of all values in an array.
    * axis=0: Return the mean values of all components and return a one
      tuple, n-component array.
    * axis=1: Return the mean values of all components of each tuple and
      return an m-tuple, 1-component array.

    When called in parallel, this function will compute the mean across
    processes when a controller argument is passed or the global controller
    is defined. To disable parallel summing when running in parallel, pass a
    dummy controller as follows:

    mean(array, controller=vtk.vtkDummyController()).
    """
    if axis is None or axis == 0:
        return sum_per_block(array, axis, controller) / count_per_block(array, axis, controller)
    else:
        return sum(array, axis, controller)

def max_per_block(array, axis=None, controller=None):
    """Returns the max of all values along a particular axis (dimension)
    for each block of a VTKCompositeDataArray.
    Given an array of m tuples and n components:
    * Default is to return the max of all values in an array.
    * axis=0: Return the max values of all components and return a one
      tuple, n-component array.
    * axis=1: Return the max values of all components of each tuple and return
      an m-tuple, 1-component array.

    When called in parallel, this function will compute the max across
    processes when a controller argument is passed or the global controller
    is defined. To disable parallel summing when running in parallel, pass a
    dummy controller as follows:

    max_per_block(array, controller=vtk.vtkDummyController()).
    """
    class MaxPerBlockImpl:
        def op(self):
            return max

        def op2(self):
            return algs.max

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.MAX

        def default(self):
            return numpy.finfo(numpy.float64).min

    return _global_per_block(MaxPerBlockImpl(), array, axis, controller)

def min_per_block(array, axis=None, controller=None):
    """Returns the min of all values along a particular axis (dimension)
    for each block of a VTKCompositeDataArray.
    Given an array of m tuples and n components:
    * Default is to return the min of all values in an array.
    * axis=0: Return the min values of all components and return a one
      tuple, n-component array.
    * axis=1: Return the min values of all components of each tuple and
      return an m-tuple, 1-component array.

    When called in parallel, this function will compute the min across
    processes when a controller argument is passed or the global controller
    is defined. To disable parallel summing when running in parallel, pass a
    dummy controller as follows:

    min_per_block(array, controller=vtk.vtkDummyController()).
    """
    class MinPerBlockImpl:
        def op(self):
            return min

        def op2(self):
            return algs.min

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.MIN

        def default(self):
            return numpy.finfo(numpy.float64).max

    return _global_per_block(MinPerBlockImpl(), array, axis, controller)

def all(array, axis=None, controller=None):
    """Returns True if all values of an array evaluate to True, returns
    False otherwise.
    This is useful to check if all values of an array match a certain
    condition such as:

    algorithms.all(array > 5)
    """
    class MinImpl:
        def op(self):
            return algs.all

        def mpi_op(self):
            from mpi4py import MPI
            return MPI.LAND

        def serial_composite(self, array, axis):
            res = _apply_func2(algs.all, array, (axis,))
            clean_list = []
            for a in res:
                if a is not dsa.NoneArray:
                    clean_list.append(a)
            if clean_list is []:
                return None
            return algs.all(clean_list, axis=0)

        def default(self, max_comps):
            return numpy.ones(max_comps, dtype=numpy.bool)

    return _global_func(MinImpl(), array, axis, controller)

def _local_array_count(array, axis):

    if array is dsa.NoneArray:
        return numpy.int64(0)
    elif axis is None:
        return numpy.int64(array.size)
    else:
        return numpy.int64(shape(array)[0])

def _array_count(array, axis, controller):

    if array is dsa.NoneArray:
        size = numpy.int64(0)
    elif axis is None:
        size = numpy.int64(array.size)
    else:
        size = numpy.int64(shape(array)[0])

    if controller is None and vtkMultiProcessController is not None:
        controller = vtkMultiProcessController.GetGlobalController()

    if controller and controller.IsA("vtkMPIController"):
        from mpi4py import MPI
        comm = vtkMPI4PyCommunicator.ConvertToPython(controller.GetCommunicator())

        total_size = numpy.array(size, dtype=numpy.int64)
        mpitype = _lookup_mpi_type(numpy.int64)
        comm.Allreduce([size, mpitype], [total_size, mpitype], MPI.SUM)
        size = total_size

    return size

def mean(array, axis=None, controller=None, size=None):
    """Returns the mean of all values along a particular axis (dimension).
    Given an array of m tuples and n components:
    * Default is to return the mean of all values in an array.
    * axis=0: Return the mean values of all components and return a one
      tuple, n-component array.
    * axis=1: Return the mean values of all components of each tuple and
      return an m-tuple, 1-component array.

    When called in parallel, this function will compute the mean across
    processes when a controller argument is passed or the global controller
    is defined. To disable parallel summing when running in parallel, pass a
    dummy controller as follows:

    mean(array, controller=vtk.vtkDummyController()).
    """

    if axis is None or axis == 0:
        if size is None:
            size = _array_count(array, axis, controller)
        return sum(array, axis) / size
    else:
        if type(array) == dsa.VTKCompositeDataArray:
            return apply_ufunc(algs.mean, array, (axis,))
        else:
            return algs.mean(array, axis)

def var(array, axis=None, controller=None):
    """Returns the variance of all values along a particular axis (dimension).
    Given an array of m tuples and n components:
    * Default is to return the variance of all values in an array.
    * axis=0: Return the variance values of all components and return a one
      tuple, n-component array.
    * axis=1: Return the variance values of all components of each tuple and
      return an m-tuple, 1-component array.

    When called in parallel, this function will compute the variance across
    processes when a controller argument is passed or the global controller
    is defined. To disable parallel summing when running in parallel, pass a
    dummy controller as follows:

    var(array, controller=vtk.vtkDummyController()).
    """

    if axis is None or axis == 0:
        size = _array_count(array, axis, controller)
        tmp = array - mean(array, axis, controller, size)
        return sum(tmp*tmp, axis, controller) / size
    else:
        if type(array) == dsa.VTKCompositeDataArray:
            return apply_ufunc(algs.var, array, (axis,))
        else:
            return algs.var(array, axis)

def std(array, axis=None, controller=None):
    """Returns the standard deviation of all values along a particular
    axis (dimension).
    Given an array of m tuples and n components:
    * Default is to return the standard deviation of all values in an array.
    * axis=0: Return the standard deviation values of all components and
      return a one tuple, n-component array.
    * axis=1: Return the standard deviation values of all components of
      each tuple and return an m-tuple, 1-component array.

    When called in parallel, this function will compute the standard deviation
    across processes when a controller argument is passed or the global controller
    is defined. To disable parallel summing when running in parallel, pass a dummy
    controller as follows:

    std(array, controller=vtk.vtkDummyController()).
    """
    return sqrt(var(array, axis, controller))

def shape(array):
    "Returns the shape (dimensions) of an array."
    if type(array) == dsa.VTKCompositeDataArray:
        shp = None
        for a in array.Arrays:
            if a is not dsa.NoneArray:
                if shp is None:
                    shp = list(a.shape)
                else:
                    tmp = a.shape
                    if (len(shp) != len(tmp)):
                        raise ValueError("Expected arrays of same shape")
                    shp[0] += tmp[0]
                    for idx in range(1,len(tmp)):
                        if shp[idx] != tmp[idx]:
                            raise ValueError("Expected arrays of same shape")
        return tuple(shp)
    elif array is dsa.NoneArray:
        return ()
    else:
        return numpy.shape(array)

def make_vector(arrayx, arrayy, arrayz=None):
    """Given 2 or 3 scalar arrays, returns a vector array. If only
    2 scalars are provided, the third component will be set to 0."""
    if type(arrayx) == dsa.VTKCompositeDataArray and type(arrayy) == dsa.VTKCompositeDataArray and (type(arrayz) == dsa.VTKCompositeDataArray or arrayz is None):
        res = []
        if arrayz is None:
            for ax, ay in izip(arrayx.Arrays, arrayy.Arrays):
                if ax is not dsa.NoneArray and ay is not dsa.NoneArray:
                    res.append(algs.make_vector(ax, ay))
                else:
                    res.append(dsa.NoneArray)
        else:
            for ax, ay, az in izip(arrayx.Arrays, arrayy.Arrays, arrayz.Arrays):
                if ax is not dsa.NoneArray and ay is not dsa.NoneArray and az is not dsa.NoneArray:
                    res.append(algs.make_vector(ax, ay, az))
                else:
                    res.append(dsa.NoneArray)
        return dsa.VTKCompositeDataArray(res, dataset = arrayx.DataSet)
    else:
        return algs.make_vector(arrayx, arrayy, arrayz)

def unstructured_from_composite_arrays(points, arrays, controller=None):
    """Given a set of VTKCompositeDataArrays, creates a vtkUnstructuredGrid.
    The main goal of this function is to transform the output of XXX_per_block()
    methods to a single dataset that can be visualized and further processed.
    Here arrays is an iterable (e.g. list) of (array, name) pairs. Here is
    an example:

    centroid = mean_per_block(composite_data.Points)
    T = mean_per_block(composite_data.PointData['Temperature'])
    ug = unstructured_from_composite_arrays(centroid, (T, 'Temperature'))

    When called in parallel, this function makes sure that each array in
    the input dataset is represented only on 1 process. This is important
    because methods like mean_per_block() return the same value for blocks
    that are partitioned on all of the participating processes. If the
    same point were to be created across multiple processes in the output,
    filters like histogram would report duplicate values erroneously.
    """

    try:
        dataset = points.DataSet
    except AttributeError:
        dataset = None

    if dataset is None and points is not dsa.NoneArray:
        raise ValueError("Expecting a points arrays with an associated dataset.")

    if points is dsa.NoneArray:
        cpts = []
    else:
        cpts = points.Arrays
    ownership = numpy.zeros(len(cpts), dtype=numpy.int32)
    rank = 0

    # Let's first create a map of array index to composite ids.
    if dataset is None:
        ids = []
    else:
        it = dataset.NewIterator()
        it.UnRegister(None)
        itr = cpts.__iter__()
        ids = numpy.empty(len(cpts), dtype=numpy.int32)
        counter = 0
        while not it.IsDoneWithTraversal():
            _id = it.GetCurrentFlatIndex()
            ids[counter] = _id
            counter += 1
            it.GoToNextItem()

    if controller is None and vtkMultiProcessController is not None:
        controller = vtkMultiProcessController.GetGlobalController()
    if controller and controller.IsA("vtkMPIController"):
        from mpi4py import MPI
        comm = vtkMPI4PyCommunicator.ConvertToPython(controller.GetCommunicator())
        rank = comm.Get_rank()

        # Determine the max id to use for reduction
        # operations

        # Get all ids from dataset, including empty ones.
        lmax_id = numpy.int32(0)
        if dataset is not None:
            it = dataset.NewIterator()
            it.UnRegister(None)
            it.SetSkipEmptyNodes(False)
            while not it.IsDoneWithTraversal():
                _id = it.GetCurrentFlatIndex()
                lmax_id = numpy.max((lmax_id, _id)).astype(numpy.int32)
                it.GoToNextItem()
        max_id = numpy.array(0, dtype=numpy.int32)
        mpitype = _lookup_mpi_type(numpy.int32)
        comm.Allreduce([lmax_id, mpitype], [max_id, mpitype], MPI.MAX)

        # Now we figure out which processes have which ids
        lownership = numpy.empty(max_id, dtype = numpy.int32)
        lownership.fill(numpy.iinfo(numpy.int32).max)

        ownership = numpy.empty(max_id, dtype = numpy.int32)

        if dataset is not None:
            it = dataset.NewIterator()
            it.UnRegister(None)
            it.InitTraversal()
            itr = cpts.__iter__()
            while not it.IsDoneWithTraversal():
                _id = it.GetCurrentFlatIndex()
                if itr.next() is not dsa.NoneArray:
                    lownership[_id] = rank
                it.GoToNextItem()
        mpitype = _lookup_mpi_type(numpy.int32)
        # The process with the lowest id containing a block will
        # produce the output for that block.
        comm.Allreduce([lownership, mpitype], [ownership, mpitype], MPI.MIN)

    # Iterate over blocks to produce points and arrays
    from vtk.vtkCommonDataModel import vtkUnstructuredGrid
    from vtk.vtkCommonCore import vtkDoubleArray, vtkPoints
    ugrid = vtkUnstructuredGrid()
    da = vtkDoubleArray()
    da.SetNumberOfComponents(3)
    pts = vtkPoints()
    pts.SetData(da)
    counter = 0
    for pt in cpts:
        if ownership[ids[counter]] == rank:
            pts.InsertNextPoint(tuple(pt))
        counter += 1
    ugrid.SetPoints(pts)

    for ca, name in arrays:
        if ca is not dsa.NoneArray:
            da = vtkDoubleArray()
            ncomps = ca.Arrays[0].flatten().shape[0]
            da.SetNumberOfComponents(ncomps)
            counter = 0
            for a in ca.Arrays:
                if ownership[ids[counter]] == rank:
                    a = a.flatten()
                    for i in range(ncomps):
                        da.InsertNextValue(a[i])
                counter += 1
            if len(a) > 0:
                da.SetName(name)
                ugrid.GetPointData().AddArray(da)
    return ugrid

isnan = _make_ufunc(numpy.isnan)
isnan.__doc__ = "Returns a bool array, true if values is nan."

sqrt = _make_ufunc(numpy.sqrt)
sqrt.__doc__ = "Computes square root."

negative = _make_ufunc(numpy.negative)
negative.__doc__ = "Numerical negative, element-wise."

reciprocal = _make_ufunc(numpy.reciprocal)
reciprocal.__doc__ = "Return the reciprocal (1/x) of the argument, element-wise."

square = _make_ufunc(numpy.square)
square.__doc__ = "Return the element-wise square of the input."

exp = _make_ufunc(numpy.exp)
exp.__doc__ = "The exponential function."

floor = _make_ufunc(numpy.floor)
floor.__doc__ = "Returns the floor of floating point values."

ceil = _make_ufunc(numpy.ceil)
ceil.__doc__ = "Returns the ceiling of floating point values."

rint = _make_ufunc(numpy.rint)
rint.__doc__ = "Round elements of the array to the nearest integer."

sin = _make_ufunc(numpy.sin)
sin.__doc__ = "Computes sine of values in radians."

cos = _make_ufunc(numpy.cos)
cos.__doc__ = "Computes cosine of values in radians."

tan = _make_ufunc(numpy.tan)
tan.__doc__ = "Computes tangent of values in radians."

arcsin = _make_ufunc(numpy.arcsin)
arcsin.__doc__ = "Computes inverse sine."

arccos = _make_ufunc(numpy.arccos)
arccos.__doc__ = "Computes inverse cosine."

arctan = _make_ufunc(numpy.arctan)
arctan.__doc__ = "Computes inverse tangent."

arctan2 = _make_dfunc(numpy.arctan2)
arctan2.__doc__ = "Computes inverse tangent using two arguments."

sinh = _make_ufunc(numpy.sinh)
sinh.__doc__ = "Computes hyperbolic sine."

cosh = _make_ufunc(numpy.cosh)
cosh.__doc__ = "Computes hyperbolic cosine."

tanh = _make_ufunc(numpy.tanh)
tanh.__doc__ = "Computes hyperbolic tangent."

arcsinh = _make_ufunc(numpy.arcsinh)
arcsinh.__doc__ = "Computes inverse hyperbolic sine."

arccosh = _make_ufunc(numpy.arccosh)
arccosh.__doc__ = "Computes inverse hyperbolic cosine."

arctanh = _make_ufunc(numpy.arctanh)
arctanh.__doc__ = "Computes inverse hyperbolic tangent."

where = _make_ufunc(numpy.where)
where.__doc__ = """Returns the location (indices) of an array where the given
expression is true. For scalars, it returns a single array of indices.
For vectors and matrices, it returns two arrays: first with tuple indices,
second with component indices. The output of this method can be used to
extract the values from the array also by using it as the index of the [] operator.

For example:

>>> algs.where(algs.array([1,2,3]) == 2)
(array([1]),)

>>> algs.where(algs.array([[1,2,3], [2,1,1]]) == 2)
(array([0, 1]), array([1, 0]))

>>> a = array([[1,2,3], [2,1,1]])
>>> indices = algs.where(a > 2)
>>> a[indices]
array([3])
"""

flatnonzero = _make_ufunc(numpy.flatnonzero)
flatnonzero.__doc__ = "Return indices that are non-zero in the flattened version of the input array."

nonzero = _make_ufunc(numpy.nonzero)
nonzero.__doc__ = "Return the indices of the non-zero elements of the input array."

expand_dims = _make_dfunc(numpy.expand_dims)
expand_dims.__doc__ = """Insert a new dimension, corresponding to a given
position in the array shape. In VTK, this function's main use is to
enable an operator to work on a vector and a scalar field. For example,
say you want to divide each component of a vector by the magnitude of
that vector. You might try this:

>>> v
VTKArray([[ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.],
       [ 1.,  1.,  1.]])
>>> algs.mag(v)
VTKArray([ 1.73205081,  1.73205081,  1.73205081,  1.73205081,  1.73205081])
>>> v / algs.mag(v)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (5,3) (5)

The division operator does not know how to map a scalar to a vector
due to a mismatch in dimensions. This can be solved by making the
scalar a vector of 1 component (increasing its dimension to 2) as follows:

>>> v / algs.expand_dims(algs.mag(v), 1)
VTKArray([[ 0.57735027,  0.57735027,  0.57735027],
       [ 0.57735027,  0.57735027,  0.57735027],
       [ 0.57735027,  0.57735027,  0.57735027],
       [ 0.57735027,  0.57735027,  0.57735027],
       [ 0.57735027,  0.57735027,  0.57735027]])"""

abs = _make_ufunc(algs.abs)
abs.__doc__ = "Returns the absolute values of an array of scalars/vectors/tensors."

area = _make_dsfunc2(algs.area)
area.__doc__ = "Returns the surface area of each 2D cell in a mesh."

aspect = _make_dsfunc2(algs.aspect)
aspect.__doc__ = "Returns the aspect ratio of each cell in a mesh. See Verdict documentation for details."

aspect_gamma = _make_dsfunc2(algs.aspect_gamma)
aspect_gamma.__doc__ = "Returns the aspect gamma of each cell in a mesh. This metric compares root-mean-square edge length to volume. See Verdict documentation for details."

condition = _make_dsfunc2(algs.condition)
condition.__doc__ = "Returns the condition number of each cell in a mesh. See Verdict documentation for details."

cross = _make_dfunc(algs.cross)
cross.__doc__ = "Return the cross product of two vectors."

curl = _make_dsfunc(algs.curl)
curl.__doc__ = "Returns the curl a vector field."

divergence = _make_dsfunc(algs.divergence)
divergence.__doc__ = "Returns the divergence of a vector field."

det = _make_ufunc(algs.det)
det.__doc__ = "Returns the determinant of 2D matrices."

determinant = _make_ufunc(algs.determinant)
determinant.__doc__ = "Returns the determinant of 2D matrices."

diagonal = _make_dsfunc2(algs.diagonal)
diagonal.__doc__ = "Returns the diagonal length of each cell in a dataset. See Verdict documentation for details"

dot = _make_dfunc(algs.dot)
dot.__doc__ = "Returns the dot product of two vectors."

eigenvalue = _make_ufunc(algs.eigenvalue)
eigenvalue.__doc__ = "Returns the eigenvalues of 3x3 matrices. Currently only works with symmetric matrices."

eigenvector = _make_ufunc(algs.eigenvector)
eigenvector.__doc__ = "Returns the eigenvectors of 3x3 matrices. Currently only works with symmetric matrices."

gradient = _make_dsfunc(algs.gradient)
gradient.__doc__ = "Returns the gradient of  scalars or vectors."

inv = _make_ufunc(algs.inv)
inv.__doc__ = "Returns the inverse of 3x3 matrices."

inverse = _make_ufunc(algs.inverse)
inverse.__doc__ = "Returns the inverse of 3x3 matrices."

jacobian = _make_dsfunc2(algs.jacobian)
jacobian.__doc__ = "Returns the Jacobian of a dataset."

laplacian = _make_dsfunc(algs.laplacian)
laplacian.__doc__ = "Returns the Laplacian of a scalar field."

ln = _make_ufunc(algs.ln)
ln.__doc__ = "Returns the natural logarithm of its input."

log = _make_ufunc(algs.log)
log.__doc__ = "Returns the natural logarithm of its input."

log10 = _make_ufunc(algs.log10)
log10.__doc__ = "Returns the base 10 logarithm of its input."

max_angle = _make_dsfunc2(algs.max_angle)
max_angle.__doc__ = "Returns the maximum angle of each cell in a dataset. See Verdict documentation for details"

mag = _make_ufunc(algs.mag)
mag.__doc__ = "Returns the magnitude of vectors."

min_angle = _make_dsfunc2(algs.min_angle)
min_angle.__doc__ = "Returns the minimum angle of each cell in a dataset."

norm = _make_ufunc(algs.norm)
norm.__doc__ = "Computes the normalized values of vectors."

shear = _make_dsfunc2(algs.shear)
shear.__doc__ = "Returns the shear of each cell in a dataset. See Verdict documentation for details."

skew = _make_dsfunc2(algs.skew)
skew.__doc__ = "Returns the skew of each cell in a dataset. See Verdict documentation for details."

strain = _make_dsfunc(algs.strain)
strain.__doc__ = "Given a deformation vector, this function computes the infinitesimal (Cauchy) strain tensor. It can also be used to compute strain rate if the input is velocity."

surface_normal = _make_dsfunc2(algs.surface_normal)
surface_normal.__doc__ = "Returns the surface normal of each cell in a dataset."

trace = _make_ufunc(algs.trace)
trace.__doc__ = "Returns the trace of square matrices."

volume = _make_dsfunc2(algs.volume)
volume.__doc__ = "Returns the volume of each cell in a dataset. Use sum to calculate total volume of a dataset."

vorticity = _make_dsfunc(algs.vorticity)
vorticity.__doc__ = "Given a velocity field, calculates vorticity."

vertex_normal = _make_dsfunc2(algs.vertex_normal)
vertex_normal.__doc__ = "Returns the normal at each vertex of a dataset, which is defined as the average of the cell normals of all cells containing that vertex."

logical_not = _make_ufunc(numpy.logical_not)
logical_not.__doc__ = "Computes the truth value of NOT x element-wise."

divide = _make_dfunc(numpy.divide)
divide.__doc__ = "Element by element division. Both elements can be single values or arrays. Same as /."

multiply = _make_dfunc(numpy.multiply)
multiply.__doc__ = "Element by element multiplication. Both elements can be single values or arrays. Same as *."

add = _make_dfunc(numpy.add)
add.__doc__ = "Element by element addition. Both elements can be single values or arrays. Same as +."

subtract = _make_dfunc(numpy.subtract)
subtract.__doc__ = "Returns the difference of two values element-wise. Same as x - y."

mod = _make_dfunc(numpy.mod)
mod.__doc__ = "Computes x1 - floor(x1 / x2) * x2, the result has the same sign as the divisor x2. It is equivalent to the Python modulus operator x1 % x2. Same as remainder."

remainder = _make_dfunc(numpy.remainder)
remainder.__doc__ = "Computes x1 - floor(x1 / x2) * x2, the result has the same sign as the divisor x2. It is equivalent to the Python modulus operator x1 % x2. Same as mod."

power = _make_dfunc(numpy.power)
power.__doc__ = "First array elements raised to powers from second array, element-wise."

hypot = _make_dfunc(numpy.hypot)
hypot.__doc__ = "Given the 'legs' of a right triangle, return its hypotenuse."