File: vtkBiQuadraticQuad.h

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (136 lines) | stat: -rw-r--r-- 5,112 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkBiQuadraticQuad.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkBiQuadraticQuad
 * @brief   cell represents a parabolic, 9-node
 * isoparametric quad
 *
 * vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to
 * represent a two-dimensional, 9-node isoparametric parabolic quadrilateral
 * element with a Centerpoint. The interpolation is the standard finite
 * element, quadratic isoparametric shape function. The cell includes a
 * mid-edge node for each of the four edges of the cell and a center node at
 * the surface. The ordering of the eight points defining the cell are point
 * ids (0-3,4-8) where ids 0-3 define the four corner vertices of the quad;
 * ids 4-7 define the midedge nodes (0,1), (1,2), (2,3), (3,0) and 8 define
 * the face center node.
 *
 * @sa
 * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
 * vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid
 * vtkQuadraticQuad
 *
 * @par Thanks:
 * Thanks to Soeren Gebbert who developed this class and
 * integrated it into VTK 5.0.
 */

#ifndef vtkBiQuadraticQuad_h
#define vtkBiQuadraticQuad_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"

class vtkQuadraticEdge;
class vtkQuad;
class vtkTriangle;
class vtkDoubleArray;

class VTKCOMMONDATAMODEL_EXPORT vtkBiQuadraticQuad : public vtkNonLinearCell
{
public:
  static vtkBiQuadraticQuad* New();
  vtkTypeMacro(vtkBiQuadraticQuad, vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  /**
   * Implement the vtkCell API. See the vtkCell API for descriptions
   * of these methods.
   */
  int GetCellType() override { return VTK_BIQUADRATIC_QUAD; }
  int GetCellDimension() override { return 2; }
  int GetNumberOfEdges() override { return 4; }
  int GetNumberOfFaces() override { return 0; }
  vtkCell* GetEdge(int) override;
  vtkCell* GetFace(int) override { return nullptr; }

  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
  int EvaluatePosition(const double x[3], double* closestPoint, int& subId, double pcoords[3],
    double& dist2, double* weights) override;
  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
  int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
  void Derivatives(
    int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
  double* GetParametricCoords() override;

  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
    vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;

  /**
   * Clip this biquadratic quad using scalar value provided. Like contouring,
   * except that it cuts the twi quads to produce linear triangles.
   */
  void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
    vtkIdType cellId, vtkCellData* outCd, int insideOut) override;

  /**
   * Line-edge intersection. Intersection has to occur within [0,1] parametric
   * coordinates and with specified tolerance.
   */
  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId) override;

  /**
   * Return the center of the pyramid in parametric coordinates.
   */
  int GetParametricCenter(double pcoords[3]) override;

  void InterpolateFunctions(const double pcoords[3], double weights[9]) override
  {
    vtkBiQuadraticQuad::InterpolationFunctionsPrivate(pcoords, weights);
  }
  void InterpolateDerivs(const double pcoords[3], double derivs[18]) override
  {
    vtkBiQuadraticQuad::InterpolationDerivsPrivate(pcoords, derivs);
  }
  //@}

protected:
  vtkBiQuadraticQuad();
  ~vtkBiQuadraticQuad() override;

  vtkQuadraticEdge* Edge;
  vtkQuad* Quad;
  vtkTriangle* Triangle;
  vtkDoubleArray* Scalars;

private:
  vtkBiQuadraticQuad(const vtkBiQuadraticQuad&) = delete;
  void operator=(const vtkBiQuadraticQuad&) = delete;

  static void InterpolationFunctionsPrivate(const double pcoords[3], double weights[9]);
  static void InterpolationDerivsPrivate(const double pcoords[3], double derivs[18]);
};
//----------------------------------------------------------------------------
inline int vtkBiQuadraticQuad::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = 0.5;
  pcoords[2] = 0.;
  return 0;
}

#endif