| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 
 | /*=========================================================================
  Program:   Visualization Toolkit
  Module:    vtkHexahedron.h
  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.
=========================================================================*/
/**
 * @class   vtkHexahedron
 * @brief   a cell that represents a linear 3D hexahedron
 *
 * vtkHexahedron is a concrete implementation of vtkCell to represent a
 * linear, 3D rectangular hexahedron (e.g., "brick" topology). vtkHexahedron
 * uses the standard isoparametric shape functions for a linear
 * hexahedron. The hexahedron is defined by the eight points (0-7) where
 * (0,1,2,3) is the base of the hexahedron which, using the right hand rule,
 * forms a quadrilaterial whose normal points in the direction of the
 * opposite face (4,5,6,7).
 *
 * @sa
 * vtkConvexPointSet vtkPyramid vtkTetra vtkVoxel vtkWedge
 */
#ifndef vtkHexahedron_h
#define vtkHexahedron_h
#include "vtkCell3D.h"
#include "vtkCommonDataModelModule.h" // For export macro
class vtkLine;
class vtkQuad;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkHexahedron : public vtkCell3D
{
public:
  static vtkHexahedron* New();
  vtkTypeMacro(vtkHexahedron, vtkCell3D);
  void PrintSelf(ostream& os, vtkIndent indent) override;
  //@{
  /**
   * See vtkCell3D API for description of these methods.
   */
  void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override;
  // @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
  VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override);
  vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override;
  // @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
  VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override);
  void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override;
  vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override;
  vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override;
  vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override;
  vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override;
  bool GetCentroid(double centroid[3]) const override;
  bool IsInsideOut() override;
  //@}
  /**
   * static constexpr handle on the number of points.
   */
  static constexpr vtkIdType NumberOfPoints = 8;
  /**
   * static contexpr handle on the number of faces.
   */
  static constexpr vtkIdType NumberOfEdges = 12;
  /**
   * static contexpr handle on the number of edges.
   */
  static constexpr vtkIdType NumberOfFaces = 6;
  /**
   * static contexpr handle on the maximum face size. It can also be used
   * to know the number of faces adjacent to one face.
   */
  static constexpr vtkIdType MaximumFaceSize = 4;
  /**
   * static constexpr handle on the maximum valence of this cell.
   * The valence of a vertex is the number of incident edges (or equivalently faces)
   * to this vertex. It is also equal to the size of a one ring neighborhood of a vertex.
   */
  static constexpr vtkIdType MaximumValence = 3;
  //@{
  /**
   * See the vtkCell API for descriptions of these methods.
   */
  int GetCellType() override { return VTK_HEXAHEDRON; }
  int GetNumberOfEdges() override { return 12; }
  int GetNumberOfFaces() override { return 6; }
  vtkCell* GetEdge(int edgeId) override;
  vtkCell* GetFace(int faceId) override;
  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
    vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
  //@}
  int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
    double& dist2, double weights[]) override;
  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId) override;
  int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
  void Derivatives(
    int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
  double* GetParametricCoords() override;
  /**
   * Return the case table for table-based isocontouring (aka marching cubes
   * style implementations). A linear 3D cell with N vertices will have 2**N
   * cases. The returned case array lists three edges in order to produce one
   * output triangle which may be repeated to generate multiple triangles. The
   * list of cases terminates with a -1 entry.
   */
  static int* GetTriangleCases(int caseId);
  static void InterpolationFunctions(const double pcoords[3], double weights[8]);
  static void InterpolationDerivs(const double pcoords[3], double derivs[24]);
  //@{
  /**
   * Compute the interpolation functions/derivatives
   * (aka shape functions/derivatives)
   */
  void InterpolateFunctions(const double pcoords[3], double weights[8]) override
  {
    vtkHexahedron::InterpolationFunctions(pcoords, weights);
  }
  void InterpolateDerivs(const double pcoords[3], double derivs[24]) override
  {
    vtkHexahedron::InterpolationDerivs(pcoords, derivs);
  }
  //@}
  //@{
  /**
   * Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
   * Ids are related to the cell, not to the dataset.
   *
   * @note The return type changed. It used to be int*, it is now const vtkIdType*.
   * This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
   * can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
   */
  static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2);
  static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(4);
  //@}
  /**
   * Static method version of GetEdgeToAdjacentFaces.
   */
  static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2);
  /**
   * Static method version of GetFaceToAdjacentFaces.
   */
  static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(4);
  /**
   * Static method version of GetPointToIncidentEdgesArray.
   */
  static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3);
  /**
   * Static method version of GetPointToIncidentFacesArray.
   */
  static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3);
  /**
   * Static method version of GetPointToOneRingPoints.
   */
  static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3);
  /**
   * Static method version of GetCentroid.
   */
  static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);
  /**
   * Given parametric coordinates compute inverse Jacobian transformation
   * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
   * function derivatives.
   */
  void JacobianInverse(const double pcoords[3], double** inverse, double derivs[24]);
protected:
  vtkHexahedron();
  ~vtkHexahedron() override;
  vtkLine* Line;
  vtkQuad* Quad;
private:
  vtkHexahedron(const vtkHexahedron&) = delete;
  void operator=(const vtkHexahedron&) = delete;
};
#endif
 |