1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHigherOrderCurve.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkHigherOrderCurve.h"
#include "vtkCellData.h"
#include "vtkDoubleArray.h"
#include "vtkHigherOrderInterpolation.h"
#include "vtkIdList.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkTriangle.h"
#include "vtkVector.h"
#include "vtkVectorOperators.h"
vtkHigherOrderCurve::vtkHigherOrderCurve()
{
this->Approx = nullptr;
this->Order[0] = 1;
// Deliberately leave this unset. When GetOrder() is called, it will construct
// the accompanying data arrays used for other calculations.
this->Order[1] = 0;
this->Points->SetNumberOfPoints(2);
this->PointIds->SetNumberOfIds(2);
for (vtkIdType i = 0; i < 2; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i, i);
}
}
vtkHigherOrderCurve::~vtkHigherOrderCurve() = default;
void vtkHigherOrderCurve::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Order: " << this->GetOrder(0) << "\n";
if (this->PointParametricCoordinates)
{
os << indent
<< "PointParametricCoordinates: " << this->PointParametricCoordinates->GetNumberOfPoints()
<< " entries\n";
}
os << indent << "Approx: " << this->Approx << "\n";
}
void vtkHigherOrderCurve::Initialize() {}
int vtkHigherOrderCurve::CellBoundary(
int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts)
{
pts->SetNumberOfIds(1);
if (pcoords[0] <= 0.5)
{
pts->SetId(0, this->PointIds->GetId(0));
}
else
{
pts->SetId(0, this->PointIds->GetId(1));
}
return pcoords[0] >= 0.0 && pcoords[0] <= 1.0 ? 1 : 0;
}
int vtkHigherOrderCurve::EvaluatePosition(const double x[3], double closestPoint[3], int& subId,
double pcoords[3], double& minDist2, double weights[])
{
int result = 0;
int dummySubId;
double linearWeights[2];
double tmpDist2;
vtkVector3d params;
vtkVector3d tmpClosestPt;
minDist2 = VTK_DOUBLE_MAX;
vtkIdType nseg = vtkHigherOrderInterpolation::NumberOfIntervals<1>(this->GetOrder());
for (int subCell = 0; subCell < nseg; ++subCell)
{
vtkLine* approx = this->GetApproximateLine(subCell, nullptr, nullptr);
int stat = approx->EvaluatePosition(
x, tmpClosestPt.GetData(), dummySubId, params.GetData(), tmpDist2, linearWeights);
if (stat != -1 && tmpDist2 < minDist2)
{
result = stat;
subId = subCell;
minDist2 = tmpDist2;
for (int ii = 0; ii < 3; ++ii)
{
pcoords[ii] = params[ii]; // We will translate the winning parameter values later.
if (closestPoint)
{
closestPoint[ii] = tmpClosestPt[ii];
}
}
}
}
if (result != -1)
{
this->TransformApproxToCellParams(subId, pcoords);
if (closestPoint)
{
this->EvaluateLocation(dummySubId, pcoords, closestPoint, weights);
}
else
{
this->InterpolateFunctions(pcoords, weights);
}
}
return result;
}
void vtkHigherOrderCurve::EvaluateLocation(
int& subId, const double pcoords[3], double x[3], double* weights)
{
subId = 0; // TODO: Should this be -1?
this->InterpolateFunctions(pcoords, weights);
double p[3];
x[0] = x[1] = x[2] = 0.;
vtkIdType nPoints = this->GetPoints()->GetNumberOfPoints();
for (vtkIdType idx = 0; idx < nPoints; ++idx)
{
this->Points->GetPoint(idx, p);
for (vtkIdType jdx = 0; jdx < 3; ++jdx)
{
x[jdx] += p[jdx] * weights[idx];
}
}
}
void vtkHigherOrderCurve::Contour(double value, vtkDataArray* cellScalars,
vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines,
vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId,
vtkCellData* outCd)
{
this->PrepareApproxData(
inPd, inCd, cellId, cellScalars); // writes to this->{CellScalars, ApproxPD, ApproxCD}
vtkIdType nseg = vtkHigherOrderInterpolation::NumberOfIntervals<1>(this->GetOrder());
for (int i = 0; i < nseg; ++i)
{
vtkLine* approx =
this->GetApproximateLine(i, this->CellScalars.GetPointer(), this->Scalars.GetPointer());
approx->Contour(value, this->Scalars.GetPointer(), locator, verts, lines, polys, this->ApproxPD,
outPd, this->ApproxCD, cellId, outCd);
}
}
void vtkHigherOrderCurve::Clip(double value, vtkDataArray* cellScalars,
vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd,
vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut)
{
this->PrepareApproxData(
inPd, inCd, cellId, cellScalars); // writes to this->{CellScalars, ApproxPD, ApproxCD}
vtkIdType nseg = vtkHigherOrderInterpolation::NumberOfIntervals<1>(this->GetOrder());
for (int i = 0; i < nseg; ++i)
{
vtkLine* approx =
this->GetApproximateLine(i, this->CellScalars.GetPointer(), this->Scalars.GetPointer());
approx->Clip(value, this->Scalars.GetPointer(), locator, polys, this->ApproxPD, outPd,
this->ApproxCD, cellId, outCd, insideOut);
}
}
int vtkHigherOrderCurve::IntersectWithLine(
const double* p1, const double* p2, double tol, double& t, double* x, double* pcoords, int& subId)
{
vtkIdType nseg = vtkHigherOrderInterpolation::NumberOfIntervals<1>(this->GetOrder());
double tFirst = VTK_DOUBLE_MAX;
bool intersection = false;
vtkVector3d tmpX;
vtkVector3d tmpP;
int tmpId;
for (int i = 0; i < nseg; ++i)
{
vtkLine* approx = this->GetApproximateLine(i);
if (approx->IntersectWithLine(p1, p2, tol, t, tmpX.GetData(), tmpP.GetData(), tmpId))
{
// Record the point closest to p1 in the direction of p2 unless there is no other
// intersection, in which case we will report a point "before" p1 (further from p2 than p1).
if (!intersection || (t >= 0 && (t < tFirst || tFirst < 0)))
{
tFirst = t;
subId = i;
for (int ii = 0; ii < 3; ++ii)
{
x[ii] = tmpX[ii];
pcoords[ii] = tmpP[ii]; // Translate this after we're sure it's the closest hit.
}
}
intersection = true;
}
}
if (intersection)
{
intersection &= this->TransformApproxToCellParams(subId, pcoords);
t = tFirst;
}
return intersection ? 1 : 0;
}
int vtkHigherOrderCurve::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts)
{
ptIds->Reset();
pts->Reset();
vtkIdType nseg = vtkHigherOrderInterpolation::NumberOfIntervals<1>(this->GetOrder());
for (int i = 0; i < nseg; ++i)
{
vtkLine* approx = this->GetApproximateLine(i);
if (approx->Triangulate(1, this->TmpIds.GetPointer(), this->TmpPts.GetPointer()))
{
// Sigh. Triangulate methods all reset their points/ids
// so we must copy them to our output.
vtkIdType np = this->TmpPts->GetNumberOfPoints();
vtkIdType ni = this->TmpIds->GetNumberOfIds();
for (vtkIdType ii = 0; ii < np; ++ii)
{
pts->InsertNextPoint(this->TmpPts->GetPoint(ii));
}
for (vtkIdType ii = 0; ii < ni; ++ii)
{
ptIds->InsertNextId(this->TmpIds->GetId(ii));
}
}
}
return 1;
}
void vtkHigherOrderCurve::Derivatives(int vtkNotUsed(subId), const double vtkNotUsed(pcoords)[3],
const double* vtkNotUsed(values), int vtkNotUsed(dim), double* vtkNotUsed(derivs))
{
// TODO - if the effort is justified, someone should implement a correct
// version of this method
vtkErrorMacro("Derivatives() is not implemented for vtkHigherOrderCurve.");
}
void vtkHigherOrderCurve::SetParametricCoords()
{
if (!this->PointParametricCoordinates)
{
this->PointParametricCoordinates = vtkSmartPointer<vtkPoints>::New();
this->PointParametricCoordinates->SetDataTypeToDouble();
}
// Ensure Order is up-to-date and check that current point size matches:
if (static_cast<int>(this->PointParametricCoordinates->GetNumberOfPoints()) != this->GetOrder(1))
{
this->PointParametricCoordinates->Initialize();
vtkHigherOrderInterpolation::AppendCurveCollocationPoints(
this->PointParametricCoordinates, this->Order);
}
}
double* vtkHigherOrderCurve::GetParametricCoords()
{
this->SetParametricCoords();
return vtkDoubleArray::SafeDownCast(this->PointParametricCoordinates->GetData())->GetPointer(0);
}
double vtkHigherOrderCurve::GetParametricDistance(const double pcoords[3])
{
double pDist, pDistMax;
pDistMax = (pcoords[0] < 0. ? -pcoords[0] : (pcoords[0] > 1. ? pcoords[0] - 1. : 0.));
// The quadrilateral's 2nd and 3rd parametric coordinate should always be 0:
for (int ii = 1; ii < 3; ++ii)
{
if (pcoords[ii] != 0.0 && (pDist = std::abs(pcoords[ii])) > pDistMax)
{
pDistMax = pDist;
}
}
return pDistMax;
}
const int* vtkHigherOrderCurve::GetOrder()
{
vtkIdType npts = this->Points->GetNumberOfPoints();
if (this->Order[1] != npts)
{
int pointsPerAxis = static_cast<int>(npts); // number of points along each axis
this->Order[0] = pointsPerAxis - 1; // order 1 is linear, 2 is quadratic, ...
this->Order[1] = pointsPerAxis;
this->CellScalars->SetNumberOfTuples(pointsPerAxis);
}
return this->Order;
}
/// Return a linear segment used to approximate a region of the nonlinear curve.
vtkLine* vtkHigherOrderCurve::GetApprox()
{
if (!this->Approx)
{
this->Approx = vtkSmartPointer<vtkLine>::New();
this->ApproxPD = vtkSmartPointer<vtkPointData>::New();
this->ApproxCD = vtkSmartPointer<vtkCellData>::New();
}
return this->Approx.GetPointer();
}
/**\brief Prepare point data for use by linear approximating-elements.
*
* This copies the point data for the current cell into a new point-data
* object so that the point ids and scalar ids can match.
*/
void vtkHigherOrderCurve::PrepareApproxData(
vtkPointData* pd, vtkCellData* cd, vtkIdType cellId, vtkDataArray* cellScalars)
{
this->GetApprox(); // Ensure this->Approx{PD,CD} are non-NULL.
this->GetOrder(); // Ensure the order has been updated to match this element.
vtkIdType npts = this->Order[1];
vtkIdType nele = this->Order[0];
this->ApproxPD->Initialize();
this->ApproxCD->Initialize();
this->ApproxPD->CopyAllOn();
this->ApproxCD->CopyAllOn();
this->ApproxPD->CopyAllocate(pd, npts);
this->ApproxCD->CopyAllocate(cd, nele);
for (int pp = 0; pp < npts; ++pp)
{
this->ApproxPD->CopyData(pd, this->PointIds->GetId(pp), pp);
this->CellScalars->SetValue(pp, cellScalars->GetTuple1(pp));
}
for (int ee = 0; ee < nele; ++ee)
{
this->ApproxCD->CopyData(cd, cellId, ee);
}
}
/// A convenience method; see the overloaded variant for more information.
bool vtkHigherOrderCurve::SubCellCoordinatesFromId(vtkVector3i& ijk, int subId)
{
ijk[1] = ijk[2] = 0;
return this->SubCellCoordinatesFromId(ijk[0], subId);
}
/**\brief Given an integer specifying an approximating linear segment, compute its IJK
* coordinate-position in this cell.
*
* The \a subId specifies the lower-, left-, front-most vertex of the approximating segment.
* This sets the ijk coordinates of that point.
*
* You must have called this->GetOrder() **before** invoking this method so that the order will be
* up to date.
*/
bool vtkHigherOrderCurve::SubCellCoordinatesFromId(int& i, int subId)
{
if (subId < 0)
{
return false;
}
i = subId % this->Order[0];
return true; // TODO: detect more invalid subId values
}
/**\brief Given (i,j,k) coordinates within the HigherOrder curve, return an offset into the local
* connectivity (PointIds) array.
*
* Ensure that you have called GetOrder() before calling this method
* so that this->Order is up to date. This method does no checking
* before using it to map connectivity-array offsets.
*/
int vtkHigherOrderCurve::PointIndexFromIJK(int i, int vtkNotUsed(j), int vtkNotUsed(k))
{
bool ibdy = (i == 0 || i == this->Order[0]);
// How many boundaries do we lie on at once?
int nbdy = (ibdy ? 1 : 0);
if (nbdy == 1) // Vertex DOF
{ // ijk is a corner node. Return the proper index (somewhere in [0,7]):
return i ? 1 : 0;
}
int offset = 2;
return (i - 1) + offset;
}
/**\brief Given the index, \a subCell, of a linear approximating-segment, translate pcoords from
* that segment into this nonlinear curve.
*
* You must call this->GetOrder() **before** invoking this method as it assumes
* the order is up to date.
*/
bool vtkHigherOrderCurve::TransformApproxToCellParams(int subCell, double* pcoords)
{
vtkVector3i ijk;
if (!this->SubCellCoordinatesFromId(ijk, subCell))
{
return false;
}
pcoords[0] = (pcoords[0] + ijk[0]) / this->Order[0];
for (int pp = 1; pp < 3; ++pp)
{
pcoords[pp] = 0.;
}
return true;
}
|