1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHigherOrderHexahedron.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkHigherOrderHexahedron.h"
#include "vtkCellData.h"
#include "vtkDoubleArray.h"
#include "vtkHexahedron.h"
#include "vtkHigherOrderCurve.h"
#include "vtkHigherOrderInterpolation.h"
#include "vtkHigherOrderQuadrilateral.h"
#include "vtkIdList.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkTriangle.h"
#include "vtkVector.h"
#include "vtkVectorOperators.h"
vtkHigherOrderHexahedron::vtkHigherOrderHexahedron()
{
this->Approx = nullptr;
this->Order[0] = this->Order[1] = this->Order[2] = 1;
// Deliberately leave this unset. When GetOrder() is called, it will construct
// the accompanying data arrays used for other calculations.
this->Order[3] = 0;
this->Points->SetNumberOfPoints(8);
this->PointIds->SetNumberOfIds(8);
// this->CellScalars->SetNumberOfTuples(this->Order[3]);
for (vtkIdType i = 0; i < 8; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i, -1);
}
}
vtkHigherOrderHexahedron::~vtkHigherOrderHexahedron() = default;
void vtkHigherOrderHexahedron::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Order: " << this->GetOrder(3) << "\n";
if (this->PointParametricCoordinates)
{
os << indent
<< "PointParametricCoordinates: " << this->PointParametricCoordinates->GetNumberOfPoints()
<< " entries\n";
}
os << indent << "Approx: " << this->Approx << "\n";
}
void vtkHigherOrderHexahedron::SetEdgeIdsAndPoints(int edgeId,
const std::function<void(const vtkIdType&)>& set_number_of_ids_and_points,
const std::function<void(const vtkIdType&, const vtkIdType&)>& set_ids_and_points)
{
const int* order = this->GetOrder();
int oi = vtkHigherOrderInterpolation::GetVaryingParameterOfHexEdge(edgeId);
vtkVector2i eidx = vtkHigherOrderInterpolation::GetPointIndicesBoundingHexEdge(edgeId);
vtkIdType npts = order[oi] + 1;
int sn = 0;
set_number_of_ids_and_points(npts);
for (int i = 0; i < 2; ++i, ++sn)
{
set_ids_and_points(sn, eidx[i]);
}
// Now add edge-interior points in axis order:
int offset = 8;
if (oi == 2)
{
offset += 4 * (order[0] + order[1] - 2);
offset += (edgeId - 8) * (order[2] - 1);
}
else
{
for (int ee = 0; ee < edgeId; ++ee)
{
offset += order[ee % 2 == 0 ? 0 : 1] - 1;
}
}
for (int jj = 0; jj < order[oi] - 1; ++jj, ++sn)
{
set_ids_and_points(sn, offset + jj);
}
}
void vtkHigherOrderHexahedron::SetFaceIdsAndPoints(vtkHigherOrderQuadrilateral* result, int faceId,
const std::function<void(const vtkIdType&)>& set_number_of_ids_and_points,
const std::function<void(const vtkIdType&, const vtkIdType&)>& set_ids_and_points)
{
if (faceId < 0 || faceId >= 6)
{
return;
}
// Do we need to flip the face to get an outward-pointing normal?
bool flipFace = (faceId % 2 == ((faceId / 2) % 2) ? true : false);
const int* order = this->GetOrder();
vtkVector2i faceParams = vtkHigherOrderInterpolation::GetVaryingParametersOfHexFace(faceId);
const int* corners = vtkHigherOrderInterpolation::GetPointIndicesBoundingHexFace(faceId);
int npts = (order[faceParams[0]] + 1) * (order[faceParams[1]] + 1);
set_number_of_ids_and_points(npts);
result->SetOrder(order[faceParams[0]], order[faceParams[1]]);
// Add vertex DOFs to result
int sn = 0;
if (!flipFace)
{
for (int ii = 0; ii < 4; ++ii, ++sn)
{
set_ids_and_points(sn, corners[ii]);
}
}
else
{
for (int ii = 0; ii < 4; ++ii, ++sn)
{
set_ids_and_points((5 - sn) % 4, corners[ii]);
}
}
// Add edge DOFs to result
int offset;
const int* faceEdges = vtkHigherOrderInterpolation::GetEdgeIndicesBoundingHexFace(faceId);
for (int ii = 0; ii < 4; ++ii)
{
offset = 8;
if (!flipFace)
{
const int edgeId = faceEdges[ii];
const int pp = vtkHigherOrderInterpolation::GetVaryingParameterOfHexEdge(edgeId);
if (pp == 2)
{
offset += 4 * (order[0] + order[1] - 2);
offset += (edgeId - 8) * (order[2] - 1);
}
else
{
for (int ee = 0; ee < edgeId; ++ee)
{
offset += order[ee % 2 == 0 ? 0 : 1] - 1;
}
}
for (int jj = 0; jj < order[pp] - 1; ++jj, ++sn)
{
set_ids_and_points(sn, offset + jj);
}
}
else
{
// Flip both the edge position among edges (ii => (4 - ii) % 4)
// and the edge's node order (jj => order[pp] - jj - 1).
const int edgeId = faceEdges[(4 - ii) % 4];
const int pp = vtkHigherOrderInterpolation::GetVaryingParameterOfHexEdge(edgeId);
if (pp == 2)
{
offset += 4 * (order[0] + order[1] - 2);
offset += (edgeId - 8) * (order[2] - 1);
}
else
{
for (int ee = 0; ee < edgeId; ++ee)
{
offset += order[ee % 2 == 0 ? 0 : 1] - 1;
}
}
if (ii % 2 == 0)
{
for (int jj = 0; jj < order[pp] - 1; ++jj, ++sn)
{
set_ids_and_points(sn, offset + order[pp] - jj - 2);
}
}
else
{
for (int jj = 0; jj < order[pp] - 1; ++jj, ++sn)
{
set_ids_and_points(sn, offset + jj);
}
}
}
}
// Now add face DOF
offset = 8 + 4 * (order[0] + order[1] + order[2] - 3);
// skip DOF for other faces of hex before this one
for (int ff = 0; ff < faceId; ++ff)
{
vtkVector2i tmp = vtkHigherOrderInterpolation::GetVaryingParametersOfHexFace(ff);
offset += (order[tmp[0]] - 1) * (order[tmp[1]] - 1);
}
if (!flipFace)
{
int nfdof = (order[faceParams[0]] - 1) * (order[faceParams[1]] - 1);
for (int ii = 0; ii < nfdof; ++ii, ++sn)
{
set_ids_and_points(sn, offset + ii);
}
}
else
{
int delta = order[faceParams[0]] - 1;
for (int jj = 0; jj < (order[faceParams[1]] - 1); ++jj)
{
for (int ii = delta - 1; ii >= 0; --ii, ++sn)
{
set_ids_and_points(sn, offset + ii + jj * delta);
}
}
}
}
void vtkHigherOrderHexahedron::Initialize() {}
int vtkHigherOrderHexahedron::CellBoundary(
int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts)
{
double t1 = pcoords[0] - pcoords[1];
double t2 = 1.0 - pcoords[0] - pcoords[1];
double t3 = pcoords[1] - pcoords[2];
double t4 = 1.0 - pcoords[1] - pcoords[2];
double t5 = pcoords[2] - pcoords[0];
double t6 = 1.0 - pcoords[2] - pcoords[0];
pts->SetNumberOfIds(4);
// compare against six planes in parametric space that divide element
// into six pieces.
if (t3 >= 0.0 && t4 >= 0.0 && t5 < 0.0 && t6 >= 0.0)
{
pts->SetId(0, this->PointIds->GetId(0));
pts->SetId(1, this->PointIds->GetId(1));
pts->SetId(2, this->PointIds->GetId(2));
pts->SetId(3, this->PointIds->GetId(3));
}
else if (t1 >= 0.0 && t2 < 0.0 && t5 < 0.0 && t6 < 0.0)
{
pts->SetId(0, this->PointIds->GetId(1));
pts->SetId(1, this->PointIds->GetId(2));
pts->SetId(2, this->PointIds->GetId(6));
pts->SetId(3, this->PointIds->GetId(5));
}
else if (t1 >= 0.0 && t2 >= 0.0 && t3 < 0.0 && t4 >= 0.0)
{
pts->SetId(0, this->PointIds->GetId(0));
pts->SetId(1, this->PointIds->GetId(1));
pts->SetId(2, this->PointIds->GetId(5));
pts->SetId(3, this->PointIds->GetId(4));
}
else if (t3 < 0.0 && t4 < 0.0 && t5 >= 0.0 && t6 < 0.0)
{
pts->SetId(0, this->PointIds->GetId(4));
pts->SetId(1, this->PointIds->GetId(5));
pts->SetId(2, this->PointIds->GetId(6));
pts->SetId(3, this->PointIds->GetId(7));
}
else if (t1 < 0.0 && t2 >= 0.0 && t5 >= 0.0 && t6 >= 0.0)
{
pts->SetId(0, this->PointIds->GetId(0));
pts->SetId(1, this->PointIds->GetId(4));
pts->SetId(2, this->PointIds->GetId(7));
pts->SetId(3, this->PointIds->GetId(3));
}
else // if ( t1 < 0.0 && t2 < 0.0 && t3 >= 0.0 && t6 < 0.0 )
{
pts->SetId(0, this->PointIds->GetId(2));
pts->SetId(1, this->PointIds->GetId(3));
pts->SetId(2, this->PointIds->GetId(7));
pts->SetId(3, this->PointIds->GetId(6));
}
if (pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 ||
pcoords[2] < 0.0 || pcoords[2] > 1.0)
{
return 0;
}
else
{
return 1;
}
}
int vtkHigherOrderHexahedron::EvaluatePosition(const double x[3], double closestPoint[3],
int& subId, double pcoords[3], double& minDist2, double weights[])
{
int result = 0;
int dummySubId;
double linearWeights[8];
double tmpDist2;
vtkVector3d params;
vtkVector3d tmpClosestPt;
minDist2 = VTK_DOUBLE_MAX;
vtkIdType nhex = vtkHigherOrderInterpolation::NumberOfIntervals<3>(this->GetOrder());
for (int subCell = 0; subCell < nhex; ++subCell)
{
vtkHexahedron* approx = this->GetApproximateHex(subCell, nullptr, nullptr);
int stat = approx->EvaluatePosition(
x, tmpClosestPt.GetData(), dummySubId, params.GetData(), tmpDist2, linearWeights);
if (stat != -1 && tmpDist2 < minDist2)
{
result = stat;
subId = subCell;
minDist2 = tmpDist2;
for (int ii = 0; ii < 3; ++ii)
{
pcoords[ii] = params[ii]; // We will translate the winning parameter values later.
if (closestPoint)
{
closestPoint[ii] = tmpClosestPt[ii];
}
}
}
}
if (result != -1)
{
this->TransformApproxToCellParams(subId, pcoords);
if (closestPoint)
{
this->EvaluateLocation(dummySubId, pcoords, closestPoint, weights);
}
else
{
this->InterpolateFunctions(pcoords, weights);
}
}
return result;
}
void vtkHigherOrderHexahedron::EvaluateLocation(
int& subId, const double pcoords[3], double x[3], double* weights)
{
subId = 0; // LagrangeHexahedron tests that this is set to 0
this->InterpolateFunctions(pcoords, weights);
double p[3];
x[0] = x[1] = x[2] = 0.;
vtkIdType nPoints = this->GetPoints()->GetNumberOfPoints();
for (vtkIdType idx = 0; idx < nPoints; ++idx)
{
this->Points->GetPoint(idx, p);
for (vtkIdType jdx = 0; jdx < 3; ++jdx)
{
x[jdx] += p[jdx] * weights[idx];
}
}
}
void vtkHigherOrderHexahedron::Contour(double value, vtkDataArray* cellScalars,
vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines,
vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId,
vtkCellData* outCd)
{
this->PrepareApproxData(
inPd, inCd, cellId, cellScalars); // writes to this->{CellScalars, ApproxPD, ApproxCD}
vtkIdType nhex = vtkHigherOrderInterpolation::NumberOfIntervals<3>(this->GetOrder());
for (int i = 0; i < nhex; ++i)
{
vtkHexahedron* approx =
this->GetApproximateHex(i, this->CellScalars.GetPointer(), this->Scalars.GetPointer());
approx->Contour(value, this->Scalars.GetPointer(), locator, verts, lines, polys, this->ApproxPD,
outPd, this->ApproxCD, cellId, outCd);
}
}
void vtkHigherOrderHexahedron::Clip(double value, vtkDataArray* cellScalars,
vtkIncrementalPointLocator* locator, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd,
vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut)
{
this->PrepareApproxData(
inPd, inCd, cellId, cellScalars); // writes to this->{CellScalars, ApproxPD, ApproxCD}
vtkIdType nhex = vtkHigherOrderInterpolation::NumberOfIntervals<3>(this->GetOrder());
for (int i = 0; i < nhex; ++i)
{
vtkHexahedron* approx =
this->GetApproximateHex(i, this->CellScalars.GetPointer(), this->Scalars.GetPointer());
approx->Clip(value, this->Scalars.GetPointer(), locator, polys, this->ApproxPD, outPd,
this->ApproxCD, cellId, outCd, insideOut);
}
}
int vtkHigherOrderHexahedron::IntersectWithLine(
const double* p1, const double* p2, double tol, double& t, double* x, double* pcoords, int& subId)
{
double tFirst = VTK_DOUBLE_MAX;
bool intersection = false;
vtkVector3d tmpX;
vtkVector3d tmpP;
int tmpId;
this->GetOrder(); // Ensure Order is up to date.
for (int ff = 0; ff < this->GetNumberOfFaces(); ++ff)
{
vtkCell* bdy = this->GetFace(ff);
if (bdy->IntersectWithLine(p1, p2, tol, t, tmpX.GetData(), tmpP.GetData(), tmpId))
{
intersection = true;
if (t < tFirst)
{
tFirst = t;
subId = ff;
for (int ii = 0; ii < 3; ++ii)
{
x[ii] = tmpX[ii];
pcoords[ii] = tmpP[ii]; // Translate this after we're sure it's the closest hit.
}
}
}
}
if (intersection)
{
intersection &= this->TransformFaceToCellParams(subId, pcoords);
t = tFirst;
}
return intersection ? 1 : 0;
}
int vtkHigherOrderHexahedron::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts)
{
ptIds->Reset();
pts->Reset();
vtkIdType nhex = vtkHigherOrderInterpolation::NumberOfIntervals<3>(this->GetOrder());
for (int i = 0; i < nhex; ++i)
{
vtkHexahedron* approx = this->GetApproximateHex(i);
if (approx->Triangulate(1, this->TmpIds.GetPointer(), this->TmpPts.GetPointer()))
{
// Sigh. Triangulate methods all reset their points/ids
// so we must copy them to our output.
vtkIdType np = this->TmpPts->GetNumberOfPoints();
vtkIdType ni = this->TmpIds->GetNumberOfIds();
for (vtkIdType ii = 0; ii < np; ++ii)
{
pts->InsertNextPoint(this->TmpPts->GetPoint(ii));
}
for (vtkIdType ii = 0; ii < ni; ++ii)
{
ptIds->InsertNextId(this->TmpIds->GetId(ii));
}
}
}
return 1;
}
void vtkHigherOrderHexahedron::Derivatives(
int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs)
{
this->getInterp()->Tensor3EvaluateDerivative(
this->Order, pcoords, this->GetPoints(), values, dim, derivs);
}
void vtkHigherOrderHexahedron::SetParametricCoords()
{
if (!this->PointParametricCoordinates)
{
this->PointParametricCoordinates = vtkSmartPointer<vtkPoints>::New();
this->PointParametricCoordinates->SetDataTypeToDouble();
}
// Ensure Order is up-to-date and check that current point size matches:
if (static_cast<int>(this->PointParametricCoordinates->GetNumberOfPoints()) != this->GetOrder(3))
{
this->PointParametricCoordinates->Initialize();
vtkHigherOrderInterpolation::AppendHexahedronCollocationPoints(
this->PointParametricCoordinates, this->Order);
}
}
double* vtkHigherOrderHexahedron::GetParametricCoords()
{
this->SetParametricCoords();
return vtkDoubleArray::SafeDownCast(this->PointParametricCoordinates->GetData())->GetPointer(0);
}
double vtkHigherOrderHexahedron::GetParametricDistance(const double pcoords[3])
{
double pDist, pDistMax = 0.0;
for (int ii = 0; ii < 3; ++ii)
{
pDist = (pcoords[ii] < 0. ? -pcoords[ii] : (pcoords[ii] > 1. ? pcoords[ii] - 1. : 0.));
if (pDist > pDistMax)
{
pDistMax = pDist;
}
}
return pDistMax;
}
/// Return a linear hexahedron used to approximate a region of the nonlinear hex.
vtkHexahedron* vtkHigherOrderHexahedron::GetApprox()
{
if (!this->Approx)
{
this->Approx = vtkSmartPointer<vtkHexahedron>::New();
this->ApproxPD = vtkSmartPointer<vtkPointData>::New();
this->ApproxCD = vtkSmartPointer<vtkCellData>::New();
}
return this->Approx.GetPointer();
}
/**\brief Prepare point data for use by linear approximating-elements.
*
* This copies the point data for the current cell into a new point-data
* object so that the point ids and scalar ids can match.
*/
void vtkHigherOrderHexahedron::PrepareApproxData(
vtkPointData* pd, vtkCellData* cd, vtkIdType cellId, vtkDataArray* cellScalars)
{
this->GetApprox(); // Ensure this->Approx{PD,CD} are non-NULL.
// this->GetOrder(); // Ensure the order has been updated to match this element.
this->SetOrderFromCellData(cd, this->Points->GetNumberOfPoints(), cellId);
vtkIdType npts = this->Order[3];
vtkIdType nele = this->Order[0] * this->Order[1] * this->Order[2];
this->ApproxPD->Initialize();
this->ApproxCD->Initialize();
this->ApproxPD->CopyAllOn();
this->ApproxCD->CopyAllOn();
this->ApproxPD->CopyAllocate(pd, npts);
this->ApproxCD->CopyAllocate(cd, nele);
this->CellScalars->SetNumberOfTuples(npts);
for (int pp = 0; pp < npts; ++pp)
{
this->ApproxPD->CopyData(pd, this->PointIds->GetId(pp), pp);
this->CellScalars->SetValue(pp, cellScalars->GetTuple1(pp));
}
for (int ee = 0; ee < nele; ++ee)
{
this->ApproxCD->CopyData(cd, cellId, ee);
}
}
/// A convenience method; see the overloaded variant for more information.
bool vtkHigherOrderHexahedron::SubCellCoordinatesFromId(vtkVector3i& ijk, int subId)
{
return this->SubCellCoordinatesFromId(ijk[0], ijk[1], ijk[2], subId);
}
/**\brief Given an integer specifying an approximating linear hex, compute its IJK
* coordinate-position in this cell.
*
* The \a subId specifies the lower-, left-, front-most vertex of the approximating hex.
* This sets the ijk coordinates of that point.
*
* You must have called this->GetOrder() **before** invoking this method so that the order will be
* up to date.
*/
bool vtkHigherOrderHexahedron::SubCellCoordinatesFromId(int& i, int& j, int& k, int subId)
{
if (subId < 0)
{
return false;
}
int layerSize = this->Order[0] * this->Order[1];
i = subId % this->Order[0];
j = (subId / this->Order[0]) % this->Order[1];
k = subId / layerSize;
return true; // TODO: detect more invalid subId values
}
/**\brief Given (i,j,k) coordinates within the HigherOrder hex, return an offset into the local
* connectivity (PointIds) array.
*
* Ensure that you have called GetOrder() before calling this method
* so that this->Order is up to date. This method does no checking
* before using it to map connectivity-array offsets.
*/
int vtkHigherOrderHexahedron::PointIndexFromIJK(int i, int j, int k)
{
return vtkHigherOrderHexahedron::PointIndexFromIJK(i, j, k, this->Order);
}
/**\brief Given (i,j,k) coordinates within the HigherOrder hex, return an offset into the local
* connectivity (PointIds) array.
*
* The \a order parameter must point to an array of 3 integers specifying the order
* along each axis of the hexahedron.
*/
int vtkHigherOrderHexahedron::PointIndexFromIJK(int i, int j, int k, const int* order)
{
bool ibdy = (i == 0 || i == order[0]);
bool jbdy = (j == 0 || j == order[1]);
bool kbdy = (k == 0 || k == order[2]);
// How many boundaries do we lie on at once?
int nbdy = (ibdy ? 1 : 0) + (jbdy ? 1 : 0) + (kbdy ? 1 : 0);
if (nbdy == 3) // Vertex DOF
{ // ijk is a corner node. Return the proper index (somewhere in [0,7]):
return (i ? (j ? 2 : 1) : (j ? 3 : 0)) + (k ? 4 : 0);
}
int offset = 8;
if (nbdy == 2) // Edge DOF
{
if (!ibdy)
{ // On i axis
return (i - 1) + (j ? order[0] + order[1] - 2 : 0) + (k ? 2 * (order[0] + order[1] - 2) : 0) +
offset;
}
if (!jbdy)
{ // On j axis
return (j - 1) + (i ? order[0] - 1 : 2 * (order[0] - 1) + order[1] - 1) +
(k ? 2 * (order[0] + order[1] - 2) : 0) + offset;
}
// !kbdy, On k axis
offset += 4 * (order[0] - 1) + 4 * (order[1] - 1);
return (k - 1) + (order[2] - 1) * (i ? (j ? 2 : 1) : (j ? 3 : 0)) + offset;
}
offset += 4 * (order[0] + order[1] + order[2] - 3);
if (nbdy == 1) // Face DOF
{
if (ibdy) // On i-normal face
{
return (j - 1) + ((order[1] - 1) * (k - 1)) + (i ? (order[1] - 1) * (order[2] - 1) : 0) +
offset;
}
offset += 2 * (order[1] - 1) * (order[2] - 1);
if (jbdy) // On j-normal face
{
return (i - 1) + ((order[0] - 1) * (k - 1)) + (j ? (order[2] - 1) * (order[0] - 1) : 0) +
offset;
}
offset += 2 * (order[2] - 1) * (order[0] - 1);
// kbdy, On k-normal face
return (i - 1) + ((order[0] - 1) * (j - 1)) + (k ? (order[0] - 1) * (order[1] - 1) : 0) +
offset;
}
// nbdy == 0: Body DOF
offset += 2 *
((order[1] - 1) * (order[2] - 1) + (order[2] - 1) * (order[0] - 1) +
(order[0] - 1) * (order[1] - 1));
return offset + (i - 1) + (order[0] - 1) * ((j - 1) + (order[1] - 1) * ((k - 1)));
}
vtkIdType vtkHigherOrderHexahedron::NodeNumberingMappingFromVTK8To9(
const int order[3], const vtkIdType node_id_vtk8)
{
int numPtsPerEdgeWithoutCorners[3];
numPtsPerEdgeWithoutCorners[0] = order[0] - 1;
numPtsPerEdgeWithoutCorners[1] = order[1] - 1;
numPtsPerEdgeWithoutCorners[2] = order[2] - 1;
int offset = 8 + 4 * (numPtsPerEdgeWithoutCorners[0] + numPtsPerEdgeWithoutCorners[1]) +
2 * numPtsPerEdgeWithoutCorners[2];
if ((node_id_vtk8 < offset) || (node_id_vtk8 >= offset + 2 * numPtsPerEdgeWithoutCorners[2]))
return node_id_vtk8;
else if (node_id_vtk8 < offset + numPtsPerEdgeWithoutCorners[2])
return node_id_vtk8 + numPtsPerEdgeWithoutCorners[2];
else
return node_id_vtk8 - numPtsPerEdgeWithoutCorners[2];
}
/**\brief Given the index, \a subCell, of a linear approximating-hex, translate pcoords from that
* hex into this nonlinear hex.
*
* You must call this->GetOrder() **before** invoking this method as it assumes
* the order is up to date.
*/
bool vtkHigherOrderHexahedron::TransformApproxToCellParams(int subCell, double* pcoords)
{
vtkVector3i ijk;
if (!this->SubCellCoordinatesFromId(ijk, subCell))
{
return false;
}
for (int pp = 0; pp < 3; ++pp)
{
pcoords[pp] = (pcoords[pp] + ijk[pp]) / this->Order[pp];
}
return true;
}
/**\brief Given the index, \a subCell, of a linear approximating-hex, translate pcoords from that
* hex into this nonlinear hex.
*
* You must call this->GetOrder() **before** invoking this method as it assumes
* the order is up to date.
*/
bool vtkHigherOrderHexahedron::TransformFaceToCellParams(int bdyFace, double* pcoords)
{
if (bdyFace < 0 || bdyFace >= 6)
{
return false;
}
vtkVector2i faceParams = vtkHigherOrderInterpolation::GetVaryingParametersOfHexFace(bdyFace);
vtkVector3d tmp(pcoords);
int pp;
for (pp = 0; pp < 2; ++pp)
{
pcoords[faceParams[pp]] = tmp[pp];
}
if (bdyFace % 2 == ((bdyFace / 2) % 2))
{
// Flip first parametric axis of "positive" faces to compensate for GetFace,
// which flips odd faces to obtain inward-pointing normals for each boundary.
pcoords[faceParams[0]] = 1. - pcoords[faceParams[0]];
}
pp = vtkHigherOrderInterpolation::GetFixedParameterOfHexFace(bdyFace);
pcoords[pp] = (bdyFace % 2 == 0 ? 0.0 : 1.0);
return true;
}
/**\brief Set the degree of the cell, given a vtkDataSet and cellId
*/
void vtkHigherOrderHexahedron::SetOrderFromCellData(
vtkCellData* cell_data, const vtkIdType numPts, const vtkIdType cell_id)
{
if (cell_data->SetActiveAttribute(
"HigherOrderDegrees", vtkDataSetAttributes::AttributeTypes::HIGHERORDERDEGREES) != -1)
{
double degs[3];
vtkDataArray* v = cell_data->GetHigherOrderDegrees();
v->GetTuple(cell_id, degs);
this->SetOrder(degs[0], degs[1], degs[2]);
if (this->Order[3] != numPts)
vtkErrorMacro("The degrees are not correctly set in the input file.");
}
else
{
this->SetUniformOrderFromNumPoints(numPts);
}
}
void vtkHigherOrderHexahedron::SetUniformOrderFromNumPoints(vtkIdType numPts)
{
const int deg = static_cast<int>(round(std::cbrt(static_cast<int>(numPts)))) - 1;
this->SetOrder(deg, deg, deg);
if (static_cast<int>(numPts) != this->Order[3])
vtkErrorMacro("The degrees are direction dependents, and should be set in the input file.");
}
void vtkHigherOrderHexahedron::SetOrder(int s, int t, int u)
{
if (this->PointParametricCoordinates && (Order[0] != s || Order[1] != t || Order[2] != u))
this->PointParametricCoordinates->Reset();
Order[0] = s;
Order[1] = t;
Order[2] = u;
Order[3] = (s + 1) * (t + 1) * (u + 1);
}
const int* vtkHigherOrderHexahedron::GetOrder()
{
// The interpolation routines can handle different order along each axis
// The connectivity array contains three additional entries at the end which specify the Order
// in s, t, and u The unstructure grid calls SetOrder with those three additional entries
vtkIdType numPts = this->Points->GetNumberOfPoints();
if (this->Order[3] != numPts)
{
if (numPts == 8)
this->SetUniformOrderFromNumPoints(numPts);
else
vtkErrorMacro("The degrees might be direction dependents, and should be set before GetOrder "
"is called. numPts is "
<< numPts << " and Order[3] " << Order[3]);
}
return this->Order;
}
|