1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkHyperTree.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkHyperTree
* @brief A data object structured as a tree.
*
* An hypertree grid is a dataobject containing a rectilinear grid of
* elements that can be either null or a hypertree.
* An hypertree is a dataobject describing a decomposition tree.
* A VERTICE is an element of this tree.
* A NODE, also called COARSE cell, is a specific vertice which is
* refined and than has either exactly f^d children, where f in {2,3}
* is the branching factor, the same value for all trees in this
* hypertree grid, and d in {1,2,3} is the spatial dimension. It is
* called coarse because there are smaller child cells.
* A LEAF, also called FINE cell, is a vertice without children, not
* refined. It is called fine because in the same space there are no
* finer cells.
* In a tree, we can find coarse cells smaller than fine cell but not
* in the same space.
*
* Such trees have particular names for f=2:
* - bintree (d=1),
* - quadtree (d=2),
* - octree (d=3).
*
* The original octree class name came from the following paper:
* \verbatim
* @ARTICLE{yau-srihari-1983,
* author={Mann-May Yau and Sargur N. Srihari},
* title={A Hierarchical Data Structure for Multidimensional Digital Images},
* journal={Communications of the ACM},
* month={July},
* year={1983},
* volume={26},
* number={7},
* pages={504--515}
* }
* \endverbatim
*
* Attributes are associated with (all) cells, not with points. The
* attributes that are associated with coarses, it's used for LoD
* (Level-of-Detail). The attributes on coarse cells can be given by the
* code or/and computed by the use of a specifc filter exploiting the
* values from its children (which can be leaves or not).
*
* The geometry is implicitly given by the size of the root node on each
* axis and position of the origin. In fact, in 3D, the geometry is then
* not limited to a cube but can have a rectangular shape.
*
* By construction, an hypertree is efficient in memory usage. The LoD
* feature allows for quick culling of part of the dataobject.
*
* This is an abstract class used as a superclass by a custom templated
* compact class. Other versions of this code could be made available
* to meet other needs without questioning cursors and filters.
* All methods are pure virtual. This is done to hide templates.
*
* @par Case octree with f=2, d=3:
* For each node (coarse cell), 8 children are encoded in a child index
* (from 0 to 7) in the following orientation described in hypertree grid.
* It is easy to access each child as a cell of a grid.
* Note also that the binary representation is relevant, each bit codes
* a side:
* bit 0 encodes -x side (0) or +x side (1)
* bit 1 encodes -y side (0) or +y side (1)
* bit 2 encodes -z side (0) or +z side (1)
* -z side is first, in counter-clockwise order:
* 0: -y -x sides
* 1: -y +x sides
* 2: +y -x sides
* 3: +y +x sides
* +z side is last, in counter-clockwise order:
* 4: -y -x sides
* 5: -y +x sides
* 6: +y -x sides
* 7: +y +x sides
* \verbatim
* +y
* +-+-+ ^
* |2|3| |
* +-+-+ O +z +-> +x
* |0|1|
* +-+-+
* +y
* +-+-+ ^
* |6|7| |
* +-+-+ 1 +z +-> +x
* |4|5|
* +-+-+
* \endverbatim
*
* @par Case quadtree with f=2, d=2:
* Just use 2 bits.
* \verbatim
* +y
* +-+-+ ^
* |2|3| |
* +-+-+ +-> +x
* |0|1|
* +-+-+
* \endverbatim
*
* @par Case bintree with f=2, d=1:
* Just use 1 bits.
* \verbatim
* O+-> +x
* \endverbatim
*
* It's more difficult with f=3.
*
* @par Thanks:
* This class was written by Philippe Pebay, Joachim Pouderoux, and
* Charles Law, Kitware 2013
* This class was modified by Guenole Harel and Jacques-Bernard Lekien 2014
* This class was modified by Philippe Pebay, 2016
* Among others, this class was simplified, optimized (memory), documented and
* completed for to improve IO XML by Jacques-Bernard Lekien 2018-19
* This work was supported by Commissariat a l'Energie Atomique
* CEA, DAM, DIF, F-91297 Arpajon, France.
*/
#ifndef vtkHyperTree_h
#define vtkHyperTree_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"
#include <cassert> // Used internally
#include <memory> // std::shared_ptr
class vtkBitArray;
class vtkUnsignedLongArray;
class vtkIdList;
class vtkHyperTreeGridScales;
//=============================================================================
struct vtkHyperTreeData
{
// Index of this tree in the hypertree grid
vtkIdType TreeIndex;
// Number of levels in the tree
unsigned int NumberOfLevels;
// Number of vertices in this tree (coarse and leaves)
vtkIdType NumberOfVertices;
// Number of nodes (non-leaf vertices) in the tree
vtkIdType NumberOfNodes;
// Offset start for the implicit global index mapping fixed by
// SetGlobalIndexStart after create a tree.
// If you don't choose implicit global index mapping then this
// value is -1. Then, you must to describ explicit global index
// mapping by using then SetGlobalIndexFromLocal for each cell
// in tree.
// The extra cost is equivalent to the cost of a field of values
// of cells.
vtkIdType GlobalIndexStart;
};
//=============================================================================
class VTKCOMMONDATAMODEL_EXPORT vtkHyperTree : public vtkObject
{
public:
vtkTypeMacro(vtkHyperTree, vtkObject);
void PrintSelf(ostream&, vtkIndent) override;
/**
* Restore the initial state: only one vertice is then a leaf:
* the root cell for the hypertree.
* @param branchFactor
* @param dimension
* @param numberOfChildren
*/
void Initialize(unsigned char, unsigned char, unsigned char);
/**
* Restore a state from read data, without using a cursor
* Call after create hypertree with initialize.
*
* @param numberOfLevels: the maximum number of levels.
* @param nbVertices: the number of vertices of the future tree
* (coarse and leaves), fixed either the information loading
* (for load reduction) or defined by the fixed level of reader.
* @param nbVerticesOfLastLevel: the number of vertices of last
* valid level.
* @param isParent: a binary decomposition tree by level with
* constraint all describe children. It is useless to declare
* all the lastest values to False, especially the last level
* may not be defined.
* @param isMasked: a binary mask corresponding. It is useless
* to declare all the latest values to False.
* @param outIsMasked: the mask of hypertree grid including
* this hypertree which is a vtkBitArray.
*/
virtual void InitializeForReader(vtkIdType numberOfLevels, vtkIdType nbVertices,
vtkIdType nbVerticesOfLastLevel, vtkBitArray* isParent, vtkBitArray* isMasked,
vtkBitArray* outIsMasked) = 0;
/**
* Initialize a state from write data.
* Call after create the hypertree grid.
*
* @param inIsMasked: the mask of hypertree grid including
* this hypertree which is a vtkBitArray.
* @param nbVerticesbyLevel: the number of vertices in tree
* (coarse and leaves) by each level.
* @param isParent: modify the vtkBitArray, a binary decomposition
* tree by level with constraint all describe children. It is
* useless to declare all the lastest values to False, especially
* the last level may not be defined.
* @param isMasked: modify the vtkBitArray, a binary mask
* corresponding. It is useless to declare all the latest values
* to False.
*/
virtual void GetByLevelForWriter(vtkBitArray* inIsMasked, vtkUnsignedLongArray* nbVerticesbyLevel,
vtkBitArray* isParent, vtkBitArray* isMasked, vtkIdList* ids) = 0;
/**
* Copy the structure by sharing the decomposition description
* of the tree.
* \pre ht_exist: ht!=nullptr
*/
void CopyStructure(vtkHyperTree* ht);
/**
* Return a freeze instance (a priori compact but potentially
* unmodifiable).
* This method is calling by the Squeeze method of hypertree grid.
* The mode parameter will allow to propose different instances.
* Today, there is none, the freeze call does not do anything.
*/
virtual vtkHyperTree* Freeze(const char* mode) = 0;
//@{
/**
* Set/Get tree index in hypertree grid.
* Services for internal use between hypertree grid and hypertree.
*/
void SetTreeIndex(vtkIdType treeIndex) { this->Datas->TreeIndex = treeIndex; }
vtkIdType GetTreeIndex() const { return this->Datas->TreeIndex; }
//@}
/**
* Return the number of levels.
*/
unsigned int GetNumberOfLevels() const
{
assert("post: result_greater_or_equal_to_one" && this->Datas->NumberOfLevels >= 1);
return this->Datas->NumberOfLevels;
}
/**
* Return the number of all vertices (coarse and fine) in the tree.
*/
vtkIdType GetNumberOfVertices() const { return this->Datas->NumberOfVertices; }
/**
* Return the number of nodes (coarse) in the tree.
*/
vtkIdType GetNumberOfNodes() const { return this->Datas->NumberOfNodes; }
/**
* Return the number of leaf (fine) in the tree.
*/
vtkIdType GetNumberOfLeaves() const
{
return this->Datas->NumberOfVertices - this->Datas->NumberOfNodes;
}
/**
* Return the branch factor of the tree.
*/
int GetBranchFactor() const { return this->BranchFactor; }
/**
* Return the spatial dimension of the tree.
*/
int GetDimension() const { return this->Dimension; }
/**
* Return the number of children per node of the tree.
* This value is branchfactoring scale spatial dimenion (f^d).
*/
vtkIdType GetNumberOfChildren() const { return this->NumberOfChildren; }
//@{
/**
* Set/Get scale of the tree in each direction for the ground
* level (0).
*/
void GetScale(double s[3]) const;
double GetScale(unsigned int d) const;
//@}
/**
* In an hypertree, all cells are the same size by level. This
* fonction initialize this cache system is particular used by
* the symetric filter.
*/
std::shared_ptr<vtkHyperTreeGridScales> InitializeScales(
const double* scales, bool reinitialize = false) const;
/**
* Return an instance of an implementation of a hypertree for
* given branch factor and dimension.
* Other versions of this code could be made available to meet
* other needs without questioning cursors and filters.
* Since an instance, an other instance can be creating by call
* the method Freeze (by default, nothing more, instance currently
* is returning).
*/
VTK_NEWINSTANCE
static vtkHyperTree* CreateInstance(unsigned char branchFactor, unsigned char dimension);
/**
* Return memory used in bytes.
* NB: Ignore the attribute array because its size is added by the data set.
*/
virtual unsigned long GetActualMemorySizeBytes() = 0;
/**
* Return memory used in kibibytes (1024 bytes).
* NB: Ignore the attribute array because its size is added by the data set.
*/
unsigned int GetActualMemorySize()
{
// in kilibytes
return static_cast<unsigned int>(this->GetActualMemorySizeBytes() / 1024);
}
/**
* Return if implicit global index maping has been used.
* If true, the initialize has been done by SetGlobalIndexStart (one call
* by hypertree).
* If false, the initialize has been done by SetGlobalIndexFromLocal (one
* call by cell of hypertree).
* GetGlobalIndexFromLocel get the good value of global index mapping for
* one cell what ever the initialize metho used.
*/
virtual bool IsGlobalIndexImplicit() = 0;
/**
* Set the start implicit global index mapping for the first cell in the
* current tree.
* The implicit global index mapping of a node will be computed by
* this start index + the node index (local offset in tree).
* The node index begin by 0, the origin cell in tree. The follow values
* are organizing by fatrie as i to i+NumberOfChildren, for all children
* of one coarse cell, i is 1+8*s with s in integer. The order of fatrie
* depend of order to call SubdivideLeaf.
* This global index mapping permits to access a value of
* field for a cell, in implicit, the order values depends of implicit
* order linking with the order build of this tree.
* WARNING: See of hypertree grid, for to use a implicit global index
* mapping, you have to build hypertree by hypertree without to recome
* in hypertree also build.
* For this tree, in debug, assert is calling if tried call
* SetGlobalIndexFromLocal.
* \pre not_global_index_start_if_use_global_index_from_local
*/
virtual void SetGlobalIndexStart(vtkIdType start) = 0;
/**
* Get the start global index for the current tree for implicit global
* index mapping.
*/
vtkIdType GetGlobalIndexStart() const { return this->Datas->GlobalIndexStart; }
/**
* Set the mapping between a node index in tree and a explicit global
* index mapping.
* This global index mapping permits to access a value of
* field for a cell, in explicit, the index depend of order values.
* For this tree, in debug, assert is calling if tried call
* SetGlobalIndexStart.
* \pre not_global_index_from_local_if_use_global_index_start
*/
virtual void SetGlobalIndexFromLocal(vtkIdType index, vtkIdType global) = 0;
/**
* Get the global id of a local node identified by index.
* Use the explicit mapping function if available or the implicit
* mapping build with start global index.
* \pre not_valid_index
* \pre not_positive_start_index (case implicit global index mapping)
* \pre not_positive_global_index (case explicit global index mapping)
*/
virtual vtkIdType GetGlobalIndexFromLocal(vtkIdType index) const = 0;
/**
* Return the maximum value reached by global index mapping
* (implicit or explicit).
*/
virtual vtkIdType GetGlobalNodeIndexMax() const = 0;
/**
* Return if a vertice identified by index in tree as being leaf.
* \pre not_valid_index
*/
virtual bool IsLeaf(vtkIdType index) const = 0;
/**
* Subdivide a vertice, only if its a leaf.
* \pre not_valide_index
* \pre not_leaf
*/
virtual void SubdivideLeaf(vtkIdType index, unsigned int level) = 0;
/**
* Return if a vertice identified by index in tree as a terminal node.
* For this, all childrens mus be all leaves.
* \pre not_valid_index
* \pre not_valid_child_index
*/
virtual bool IsTerminalNode(vtkIdType index) const = 0;
/**
* Return the elder child index, local index node of first child, of
* node, coarse cell, identified by index_parent.
* \pre not_valid_index_parent
* Public only for entry: vtkHyperTreeGridEntry,
* vtkHyperTreeGridGeometryEntry, vtkHyperTreeGridGeometryLevelEntry
*/
virtual vtkIdType GetElderChildIndex(unsigned int index_parent) const = 0;
//@{
/**
* In an hypertree, all cells are the same size by level. This
* fonction initializes this cache system is particulary used by
* the symetric filter.
* Here, you set a scales since extern description (sharing).
*/
void SetScales(std::shared_ptr<vtkHyperTreeGridScales> scales) const { this->Scales = scales; }
//@}
//@{
/**
* Return the existence scales.
*/
bool HasScales() const { return (this->Scales != nullptr); }
//@}
//@{
/**
* Return all scales.
*/
std::shared_ptr<vtkHyperTreeGridScales> GetScales() const
{
assert(this->Scales != nullptr);
return this->Scales;
}
//@}
protected:
vtkHyperTree()
: BranchFactor(2)
, Dimension(3)
, NumberOfChildren(8)
{
}
virtual ~vtkHyperTree() override {}
virtual void InitializePrivate() = 0;
virtual void PrintSelfPrivate(ostream& os, vtkIndent indent) = 0;
virtual void CopyStructurePrivate(vtkHyperTree* ht) = 0;
//-- Global information
// Branching factor of tree (2 or 3)
unsigned char BranchFactor;
// Dimension of tree (1, 2, or 3)
unsigned char Dimension;
// Number of children for coarse cell
unsigned char NumberOfChildren;
//-- Local information
std::shared_ptr<vtkHyperTreeData> Datas;
// Storage of pre-computed per-level cell scales
// In hypertree grid, one description by hypertree.
// In Uniform hypertree grid, one description by hypertree grid
// (all cells, differents hypertree, are identicals by level).
mutable std::shared_ptr<vtkHyperTreeGridScales> Scales;
private:
vtkHyperTree(const vtkHyperTree&) = delete;
void operator=(const vtkHyperTree&) = delete;
};
#endif
|