File: vtkLagrangeTetra.cxx

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (310 lines) | stat: -rw-r--r-- 12,126 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkLagrangeTetra.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkLagrangeTetra.h"

#include "vtkDoubleArray.h"
#include "vtkLagrangeCurve.h"
#include "vtkLagrangeTriangle.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPoints.h"
#include "vtkTetra.h"

vtkStandardNewMacro(vtkLagrangeTetra);
//----------------------------------------------------------------------------
vtkLagrangeTetra::vtkLagrangeTetra()
  : vtkHigherOrderTetra()
{
}

//----------------------------------------------------------------------------
vtkLagrangeTetra::~vtkLagrangeTetra() = default;

void vtkLagrangeTetra::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
}

vtkCell* vtkLagrangeTetra::GetEdge(int edgeId)
{
  vtkLagrangeCurve* result = EdgeCell;
  const auto set_number_of_ids_and_points = [&](const vtkIdType& npts) -> void {
    result->Points->SetNumberOfPoints(npts);
    result->PointIds->SetNumberOfIds(npts);
  };
  const auto set_ids_and_points = [&](const vtkIdType& face_id, const vtkIdType& vol_id) -> void {
    result->Points->SetPoint(face_id, this->Points->GetPoint(vol_id));
    result->PointIds->SetId(face_id, this->PointIds->GetId(vol_id));
  };

  this->SetEdgeIdsAndPoints(edgeId, set_number_of_ids_and_points, set_ids_and_points);
  return result;
}

vtkCell* vtkLagrangeTetra::GetFace(int faceId)
{
  vtkLagrangeTriangle* result = FaceCell;
  const auto set_number_of_ids_and_points = [&](const vtkIdType& npts) -> void {
    result->Points->SetNumberOfPoints(npts);
    result->PointIds->SetNumberOfIds(npts);
  };
  const auto set_ids_and_points = [&](const vtkIdType& face_id, const vtkIdType& vol_id) -> void {
    result->Points->SetPoint(face_id, this->Points->GetPoint(vol_id));
    result->PointIds->SetId(face_id, this->PointIds->GetId(vol_id));
  };

  this->SetFaceIdsAndPoints(result, faceId, set_number_of_ids_and_points, set_ids_and_points);
  return result;
}

//----------------------------------------------------------------------------
void vtkLagrangeTetra::InterpolateFunctions(const double pcoords[3], double* weights)
{
  // Adapted from P. Silvester, "High-Order Polynomial Triangular Finite
  // Elements for Potential Problems". Int. J. Engng Sci. Vol. 7, pp. 849-861.
  // Pergamon Press, 1969. The generic method is valid for all orders, but we
  // unroll the first two orders to reduce computational cost.

  double tau[4] = { pcoords[0], pcoords[1], pcoords[2], 1. - pcoords[0] - pcoords[1] - pcoords[2] };

  vtkIdType n = this->GetOrder();

  if (n == 1)
  {
    // for the linear case, we simply return the parametric coordinates, rotated
    // into the parametric frame (e.g. barycentric tau_3 = parametric x).
    weights[0] = tau[3];
    weights[1] = tau[0];
    weights[2] = tau[1];
    weights[3] = tau[2];
  }
  else if (n == 2)
  {
    if (this->GetPoints()->GetNumberOfPoints() == 15)
    {
      double u = tau[3], r = tau[0], s = tau[1], t = tau[2];
      double ur = u * r, us = u * s, ut = u * t, rs = r * s, rt = r * t, st = s * t;
      double urs = ur * s, urt = ur * t, ust = us * t, rst = rs * t;
      double urst = urs * t;

      weights[0] = u - 2.0 * (ur + us + ut) + 3.0 * (urs + urt + ust) - 4.0 * urst;
      weights[1] = r - 2.0 * (ur + rs + rt) + 3.0 * (urs + urt + rst) - 4.0 * urst;
      weights[2] = s - 2.0 * (rs + us + st) + 3.0 * (urs + rst + ust) - 4.0 * urst;
      weights[3] = t - 2.0 * (ut + rt + st) + 3.0 * (urt + ust + rst) - 4.0 * urst;
      weights[4] = 4.0 * ur - 12.0 * (urs + urt) + 32.0 * urst;
      weights[5] = 4.0 * rs - 12.0 * (urs + rst) + 32.0 * urst;
      weights[6] = 4.0 * us - 12.0 * (urs + ust) + 32.0 * urst;
      weights[7] = 4.0 * ut - 12.0 * (urt + ust) + 32.0 * urst;
      weights[8] = 4.0 * rt - 12.0 * (urt + rst) + 32.0 * urst;
      weights[9] = 4.0 * st - 12.0 * (rst + ust) + 32.0 * urst;
      weights[10] = 27.0 * urs - 108.0 * urst;
      weights[11] = 27.0 * urt - 108.0 * urst;
      weights[12] = 27.0 * rst - 108.0 * urst;
      weights[13] = 27.0 * ust - 108.0 * urst;
      weights[14] = 256.0 * urst;
      return;
    }

    weights[0] = tau[3] * (2.0 * tau[3] - 1.0);
    weights[1] = tau[0] * (2.0 * tau[0] - 1.0);
    weights[2] = tau[1] * (2.0 * tau[1] - 1.0);
    weights[3] = tau[2] * (2.0 * tau[2] - 1.0);
    weights[4] = 4.0 * tau[3] * tau[0];
    weights[5] = 4.0 * tau[0] * tau[1];
    weights[6] = 4.0 * tau[1] * tau[3];
    weights[7] = 4.0 * tau[2] * tau[3];
    weights[8] = 4.0 * tau[0] * tau[2];
    weights[9] = 4.0 * tau[1] * tau[2];
  }
  else
  {
    vtkIdType nPoints = this->GetPoints()->GetNumberOfPoints();

    for (vtkIdType idx = 0; idx < nPoints; idx++)
    {
      vtkIdType lambda[4];
      this->ToBarycentricIndex(idx, lambda);

      weights[idx] = (vtkLagrangeTriangle::eta(n, lambda[0], tau[0]) *
        vtkLagrangeTriangle::eta(n, lambda[1], tau[1]) *
        vtkLagrangeTriangle::eta(n, lambda[2], tau[2]) *
        vtkLagrangeTriangle::eta(n, lambda[3], tau[3]));
    }
  }
}

//----------------------------------------------------------------------------
void vtkLagrangeTetra::InterpolateDerivs(const double pcoords[3], double* derivs)
{
  // Analytic differentiation of the tetra shape functions, as adapted from
  // P. Silvester, "High-Order Polynomial Triangular Finite Elements for
  // Potential Problems". Int. J. Engng Sci. Vol. 7, pp. 849-861. Pergamon
  // Press, 1969. The generic method is valid for all orders, but we unroll the
  // first two orders to reduce computational cost.

  double tau[4] = { pcoords[0], pcoords[1], pcoords[2], 1. - pcoords[0] - pcoords[1] - pcoords[2] };

  vtkIdType n = this->GetOrder();

  if (n == 1)
  {
    derivs[0] = -1.0;
    derivs[1] = 1.0;
    derivs[2] = 0.0;
    derivs[3] = 0.0;
    derivs[4] = -1.0;
    derivs[5] = 0.0;
    derivs[6] = 1.0;
    derivs[7] = 0.0;
    derivs[8] = -1.0;
    derivs[9] = 0.0;
    derivs[10] = 0.0;
    derivs[11] = 1.0;
  }
  else if (n == 2)
  {
    if (this->GetPoints()->GetNumberOfPoints() == 15)
    {
      double r = tau[0], s = tau[1], t = tau[2], u = tau[3];
      double rs = r * s, rt = r * t, st = s * t;
      double umr = u - r, ums = u - s, umt = u - t;
      double *dWdr = &derivs[0], *dWds = &derivs[15], *dWdt = &derivs[30];

      dWdr[0] = 1.0 - 4.0 * u + 3.0 * ((s + t) * umr - st) - 4.0 * st * umr;
      dWdr[1] = 1.0 - 2.0 * (umr + s + t) + 3.0 * ((s + t) * umr + st) - 4.0 * st * umr;
      dWdr[2] = 3.0 * s * umr - 4.0 * st * umr;
      dWdr[3] = 3.0 * t * umr - 4.0 * st * umr;
      dWdr[4] = 4.0 * umr - 12.0 * umr * (s + t) + 32.0 * st * umr;
      dWdr[5] = 4.0 * s - 12.0 * s * (umr + t) + 32.0 * st * umr;
      dWdr[6] = -4.0 * s - 12.0 * s * (umr - t) + 32.0 * st * umr;
      dWdr[7] = -4.0 * t - 12.0 * t * (umr - s) + 32.0 * st * umr;
      dWdr[8] = 4.0 * t - 12.0 * t * (umr + s) + 32.0 * st * umr;
      dWdr[9] = 32.0 * st * umr;
      dWdr[10] = 27.0 * s * umr - 108.0 * st * umr;
      dWdr[11] = 27.0 * t * umr - 108.0 * st * umr;
      dWdr[12] = 27.0 * st - 108.0 * st * umr;
      dWdr[13] = -27.0 * st - 108.0 * st * umr;
      dWdr[14] = 256.0 * st * umr;

      dWds[0] = 1.0 - 4.0 * u + 3.0 * ((r + t) * ums - rt) - 4.0 * rt * ums;
      dWds[1] = 3.0 * r * ums - 4.0 * rt * ums;
      dWds[2] = 1 - 2.0 * (r + ums + t) + 3.0 * ((r + t) * ums + rt) - 4.0 * rt * ums;
      dWds[3] = 3.0 * t * ums - 4.0 * rt * ums;
      dWds[4] = -4.0 * r - 12.0 * r * (ums - t) + 32.0 * rt * ums;
      dWds[5] = 4.0 * r - 12.0 * r * (ums + t) + 32.0 * rt * ums;
      dWds[6] = 4.0 * ums - 12.0 * ums * (r + t) + 32.0 * rt * ums;
      dWds[7] = -4.0 * t - 12.0 * t * (ums - r) + 32.0 * rt * ums;
      dWds[8] = 32.0 * rt * ums;
      dWds[9] = 4.0 * t - 12.0 * t * (r + ums) + 32.0 * rt * ums;
      dWds[10] = 27.0 * r * ums - 108.0 * rt * ums;
      dWds[11] = -27.0 * rt - 108.0 * rt * ums;
      dWds[12] = 27.0 * rt - 108.0 * rt * ums;
      dWds[13] = 27.0 * t * ums - 108.0 * rt * ums;
      dWds[14] = 256.0 * rt * ums;

      dWdt[0] = 1.0 - 4.0 * u + 3.0 * ((r + s) * umt - rs) - 4.0 * rs * umt;
      dWdt[1] = 3.0 * r * umt - 4.0 * rs * umt;
      dWdt[2] = 3.0 * s * umt - 4.0 * rs * umt;
      dWdt[3] = 1 - 2.0 * (umt + r + s) + 3.0 * ((r + s) * umt + rs) - 4.0 * rs * umt;
      dWdt[4] = -4.0 * r - 12.0 * r * (umt - s) + 32.0 * rs * umt;
      dWdt[5] = 32.0 * rs * umt;
      dWdt[6] = -4.0 * s - 12.0 * s * (umt - r) + 32.0 * rs * umt;
      dWdt[7] = 4.0 * umt - 12.0 * umt * (r + s) + 32.0 * rs * umt;
      dWdt[8] = 4.0 * r - 12.0 * r * (umt + s) + 32.0 * rs * umt;
      dWdt[9] = 4.0 * s - 12.0 * s * (r + umt) + 32.0 * rs * umt;
      dWdt[10] = -27.0 * rs - 108.0 * rs * umt;
      dWdt[11] = 27.0 * r * umt - 108.0 * rs * umt;
      dWdt[12] = 27.0 * rs - 108.0 * rs * umt;
      dWdt[13] = 27.0 * s * umt - 108.0 * rs * umt;
      dWdt[14] = 256.0 * rs * umt;

      return;
    }
    derivs[0] = 1.0 - 4.0 * tau[3];
    derivs[1] = 4.0 * tau[0] - 1.0;
    derivs[2] = 0.0;
    derivs[3] = 0.0;
    derivs[4] = 4.0 * (tau[3] - tau[0]);
    derivs[5] = 4.0 * tau[1];
    derivs[6] = -4.0 * tau[1];
    derivs[7] = -4.0 * tau[2];
    derivs[8] = 4.0 * tau[2];
    derivs[9] = 0.0;
    derivs[10] = 1.0 - 4.0 * tau[3];
    derivs[11] = 0.0;
    derivs[12] = 4.0 * tau[1] - 1.0;
    derivs[13] = 0.0;
    derivs[14] = -4.0 * tau[0];
    derivs[15] = 4.0 * tau[0];
    derivs[16] = 4.0 * (tau[3] - tau[1]);
    derivs[17] = -4.0 * tau[2];
    derivs[18] = 0.0;
    derivs[19] = 4.0 * tau[2];
    derivs[20] = 1.0 - 4.0 * tau[3];
    derivs[21] = 0.0;
    derivs[22] = 0.0;
    derivs[23] = 4.0 * tau[2] - 1.0;
    derivs[24] = -4.0 * tau[0];
    derivs[25] = 0.0;
    derivs[26] = -4.0 * tau[1];
    derivs[27] = 4.0 * (tau[3] - tau[2]);
    derivs[28] = 4.0 * tau[0];
    derivs[29] = 4.0 * tau[1];
  }
  else
  {
    vtkIdType nPoints = this->GetPoints()->GetNumberOfPoints();

    for (vtkIdType idx = 0; idx < nPoints; idx++)
    {
      vtkIdType lambda[4];
      this->ToBarycentricIndex(idx, lambda);

      double eta_alpha = vtkLagrangeTriangle::eta(n, lambda[0], tau[0]);
      double eta_beta = vtkLagrangeTriangle::eta(n, lambda[1], tau[1]);
      double eta_gamma = vtkLagrangeTriangle::eta(n, lambda[2], tau[2]);
      double eta_delta = vtkLagrangeTriangle::eta(n, lambda[3], tau[3]);

      double d_eta_alpha = vtkLagrangeTriangle::d_eta(n, lambda[0], tau[0]);
      double d_eta_beta = vtkLagrangeTriangle::d_eta(n, lambda[1], tau[1]);
      double d_eta_gamma = vtkLagrangeTriangle::d_eta(n, lambda[2], tau[2]);
      double d_eta_delta = vtkLagrangeTriangle::d_eta(n, lambda[3], tau[3]);

      double d_f_d_tau1 = (d_eta_alpha * eta_beta * eta_gamma * eta_delta -
        eta_alpha * eta_beta * eta_gamma * d_eta_delta);
      double d_f_d_tau2 = (eta_alpha * d_eta_beta * eta_gamma * eta_delta -
        eta_alpha * eta_beta * eta_gamma * d_eta_delta);
      double d_f_d_tau3 = (eta_alpha * eta_beta * d_eta_gamma * eta_delta -
        eta_alpha * eta_beta * eta_gamma * d_eta_delta);
      // double d_f_d_tau4 = (eta_alpha*eta_beta*eta_gamma*d_eta_delta -
      //                      d_eta_alpha*eta_beta*eta_gamma*eta_delta -
      //                      eta_alpha*d_eta_beta*eta_gamma*eta_delta -
      //                      eta_alpha*eta_beta*d_eta_gamma*eta_delta);

      derivs[idx] = d_f_d_tau1;
      derivs[nPoints + idx] = d_f_d_tau2;
      derivs[2 * nPoints + idx] = d_f_d_tau3;
    }
  }
}
vtkHigherOrderCurve* vtkLagrangeTetra::getEdgeCell()
{
  return EdgeCell;
}
vtkHigherOrderTriangle* vtkLagrangeTetra::getFaceCell()
{
  return FaceCell;
}