File: vtkMeanValueCoordinatesInterpolator.cxx

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (641 lines) | stat: -rw-r--r-- 19,374 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkMeanValueCoordinatesInterpolator.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkMeanValueCoordinatesInterpolator.h"
#include "vtkObjectFactory.h"

#include "vtkArrayDispatch.h"
#include "vtkCellArray.h"
#include "vtkCellArrayIterator.h"
#include "vtkConfigure.h"
#include "vtkDataArrayRange.h"
#include "vtkDoubleArray.h"
#include "vtkFloatArray.h"
#include "vtkIdList.h"
#include "vtkMath.h"
#include "vtkPoints.h"

#include <algorithm>
#include <numeric>
#include <vector>

vtkStandardNewMacro(vtkMeanValueCoordinatesInterpolator);

// Special class that can iterate over different type of triangle representations
// This is needed since we may be provided just a connectivity vtkIdList instead
// of a vtkCellArray.
class vtkMVCTriIterator
{
public:
  vtkIdType Offset;
  vtkIdType* Tris;
  vtkIdType* Current;
  vtkIdType NumberOfTriangles;
  vtkIdType Id;

  vtkMVCTriIterator(vtkIdType numIds, vtkIdType offset, vtkIdType* t)
  {
    this->Offset = offset;
    this->Tris = t;
    this->Current = t + (this->Offset - 3); // leave room for three indices
    this->NumberOfTriangles = numIds / offset;
    this->Id = 0;
  }

  const vtkIdType* operator++()
  {
    this->Current += this->Offset;
    this->Id++;
    return this->Current;
  }
};

// Special class that can iterate over different type of polygon representations
class vtkMVCPolyIterator
{
public:
  vtkSmartPointer<vtkCellArrayIterator> Iter;
  vtkIdType CurrentPolygonSize;
  const vtkIdType* Current;
  vtkIdType Id;
  vtkIdType MaxPolygonSize;
  vtkIdType NumberOfPolygons;

  vtkMVCPolyIterator(vtkCellArray* cells)
  {
    this->NumberOfPolygons = cells->GetNumberOfCells();
    this->MaxPolygonSize = cells->GetMaxCellSize();
    this->Iter = vtk::TakeSmartPointer(cells->NewIterator());
    this->Iter->GoToFirstCell();
    if (!this->Iter->IsDoneWithTraversal())
    {
      this->Iter->GetCurrentCell(this->CurrentPolygonSize, this->Current);
    }
    else
    {
      this->CurrentPolygonSize = 0;
      this->Current = nullptr;
    }
    this->Id = this->Iter->GetCurrentCellId();
  }

  const vtkIdType* operator++()
  {
    this->Iter->GoToNextCell();
    if (!this->Iter->IsDoneWithTraversal())
    {
      this->Iter->GetCurrentCell(this->CurrentPolygonSize, this->Current);
    }
    else
    {
      this->CurrentPolygonSize = 0;
      this->Current = nullptr;
    }
    this->Id = this->Iter->GetCurrentCellId();
    return this->Current;
  }
};

//----------------------------------------------------------------------------
// Construct object with default tuple dimension (number of components) of 1.
vtkMeanValueCoordinatesInterpolator::vtkMeanValueCoordinatesInterpolator() = default;

//----------------------------------------------------------------------------
vtkMeanValueCoordinatesInterpolator::~vtkMeanValueCoordinatesInterpolator() = default;

namespace
{

//----------------------------------------------------------------------------
// Templated function to generate weights of a general polygonal mesh.
// This class actually implements the algorithm.
struct ComputeWeightsForPolygonMesh
{
  template <typename PtArrayT>
  void operator()(PtArrayT* ptArray, const double x[3], vtkMVCPolyIterator& iter, double* weights)
  {
    const auto points = vtk::DataArrayTupleRange<3>(ptArray);
    const vtkIdType npts = points.size();

    // Begin by initializing weights.
    std::fill_n(weights, static_cast<size_t>(npts), 0.);

    // create local array for storing point-to-vertex vectors and distances
    std::vector<double> dist(npts);
    std::vector<double> uVec(3 * npts);
    static constexpr double eps = 0.00000001;

    for (vtkIdType pid = 0; pid < npts; ++pid)
    {
      // point-to-vertex vector
      const auto pt = points[pid];
      uVec[3 * pid] = pt[0] - x[0];
      uVec[3 * pid + 1] = pt[1] - x[1];
      uVec[3 * pid + 2] = pt[2] - x[2];

      // distance
      dist[pid] = vtkMath::Norm(uVec.data() + 3 * pid);

      // handle special case when the point is really close to a vertex
      if (dist[pid] < eps)
      {
        weights[pid] = 1.0;
        return;
      }

      // project onto unit sphere
      uVec[3 * pid] /= dist[pid];
      uVec[3 * pid + 1] /= dist[pid];
      uVec[3 * pid + 2] /= dist[pid];
    }

    // Now loop over all triangle to compute weights
    std::vector<double*> u(iter.MaxPolygonSize);
    std::vector<double> alpha(iter.MaxPolygonSize);
    std::vector<double> theta(iter.MaxPolygonSize);

    const vtkIdType* poly = iter.Current;
    while (iter.Id < iter.NumberOfPolygons)
    {
      int nPolyPts = iter.CurrentPolygonSize;

      for (int j = 0; j < nPolyPts; j++)
      {
        u[j] = uVec.data() + 3 * poly[j];
      }

      // unit vector v.
      double v[3] = { 0., 0., 0. };
      double l;
      double angle;
      double temp[3];
      for (int j = 0; j < nPolyPts - 1; j++)
      {
        vtkMath::Cross(u[j], u[j + 1], temp);
        vtkMath::Normalize(temp);

        l = sqrt(vtkMath::Distance2BetweenPoints(u[j], u[j + 1]));
        angle = 2.0 * asin(l / 2.0);

        v[0] += 0.5 * angle * temp[0];
        v[1] += 0.5 * angle * temp[1];
        v[2] += 0.5 * angle * temp[2];
      }
      l = sqrt(vtkMath::Distance2BetweenPoints(u[nPolyPts - 1], u[0]));
      angle = 2.0 * asin(l / 2.0);
      vtkMath::Cross(u[nPolyPts - 1], u[0], temp);
      vtkMath::Normalize(temp);
      v[0] += 0.5 * angle * temp[0];
      v[1] += 0.5 * angle * temp[1];
      v[2] += 0.5 * angle * temp[2];

      const double vNorm = vtkMath::Normalize(v);

      // The direction of v depends on the orientation (clockwise or
      // contour-clockwise) of the polygon. We want to make sure that v
      // starts from x and point towards the polygon.
      if (vtkMath::Dot(v, u[0]) < 0)
      {
        v[0] = -v[0];
        v[1] = -v[1];
        v[2] = -v[2];
      }

      // angles between edges
      double n0[3], n1[3];
      for (int j = 0; j < nPolyPts - 1; j++)
      {
        // alpha
        vtkMath::Cross(u[j], v, n0);
        vtkMath::Normalize(n0);
        vtkMath::Cross(u[j + 1], v, n1);
        vtkMath::Normalize(n1);

        // alpha[j] = acos(vtkMath::Dot(n0, n1));
        l = sqrt(vtkMath::Distance2BetweenPoints(n0, n1));
        alpha[j] = 2.0 * asin(l / 2.0);
        vtkMath::Cross(n0, n1, temp);
        if (vtkMath::Dot(temp, v) < 0)
        {
          alpha[j] = -alpha[j];
        }

        // theta_j
        // theta[j] = acos(vtkMath::Dot(u[j], v));
        l = sqrt(vtkMath::Distance2BetweenPoints(u[j], v));
        theta[j] = 2.0 * asin(l / 2.0);
      }

      vtkMath::Cross(u[nPolyPts - 1], v, n0);
      vtkMath::Normalize(n0);
      vtkMath::Cross(u[0], v, n1);
      vtkMath::Normalize(n1);
      // alpha[nPolyPts-1] = acos(vtkMath::Dot(n0, n1));
      l = sqrt(vtkMath::Distance2BetweenPoints(n0, n1));
      alpha[nPolyPts - 1] = 2.0 * asin(l / 2.0);
      vtkMath::Cross(n0, n1, temp);
      if (vtkMath::Dot(temp, v) < 0)
      {
        alpha[nPolyPts - 1] = -alpha[nPolyPts - 1];
      }

      // theta[nPolyPts-1] = acos(vtkMath::Dot(u[nPolyPts-1], v));
      l = sqrt(vtkMath::Distance2BetweenPoints(u[nPolyPts - 1], v));
      theta[nPolyPts - 1] = 2.0 * asin(l / 2.0);

      bool outlierFlag = false;
      for (int j = 0; j < nPolyPts; j++)
      {
        if (fabs(theta[j]) < eps)
        {
          outlierFlag = true;
          weights[poly[j]] += vNorm / dist[poly[j]];
          break;
        }
      }

      if (outlierFlag)
      {
        poly = ++iter;
        continue;
      }

      double sum = 0.0;
      sum += 1.0 / tan(theta[0]) * (tan(alpha[0] / 2.0) + tan(alpha[nPolyPts - 1] / 2.0));
      for (int j = 1; j < nPolyPts; j++)
      {
        sum += 1.0 / tan(theta[j]) * (tan(alpha[j] / 2.0) + tan(alpha[j - 1] / 2.0));
      }

      // the special case when x lies on the polygon, handle it using 2D mvc.
      // in the 2D case, alpha = theta
      if (fabs(sum) < eps)
      {
        std::fill_n(weights, static_cast<size_t>(npts), 0.0);

        // recompute theta, the theta computed previously are not robust
        for (int j = 0; j < nPolyPts - 1; j++)
        {
          l = sqrt(vtkMath::Distance2BetweenPoints(u[j], u[j + 1]));
          theta[j] = 2.0 * asin(l / 2.0);
        }
        l = sqrt(vtkMath::Distance2BetweenPoints(u[nPolyPts - 1], u[0]));
        theta[nPolyPts - 1] = 2.0 * asin(l / 2.0);

        double sumWeight;
        weights[poly[0]] =
          1.0 / dist[poly[0]] * (tan(theta[nPolyPts - 1] / 2.0) + tan(theta[0] / 2.0));
        sumWeight = weights[poly[0]];
        for (int j = 1; j < nPolyPts; j++)
        {
          weights[poly[j]] = 1.0 / dist[poly[j]] * (tan(theta[j - 1] / 2.0) + tan(theta[j] / 2.0));
          sumWeight = sumWeight + weights[poly[j]];
        }

        if (sumWeight < eps)
        {
          return;
        }

        for (int j = 0; j < nPolyPts; j++)
        {
          weights[poly[j]] /= sumWeight;
        }

        return;
      }

      // weight
      weights[poly[0]] += vNorm / sum / dist[poly[0]] / sin(theta[0]) *
        (tan(alpha[0] / 2.0) + tan(alpha[nPolyPts - 1] / 2.0));
      for (int j = 1; j < nPolyPts; j++)
      {
        weights[poly[j]] += vNorm / sum / dist[poly[j]] / sin(theta[j]) *
          (tan(alpha[j] / 2.0) + tan(alpha[j - 1] / 2.0));
      }

      // next iteration
      poly = ++iter;
    }

    // normalize weight
    double* weightsEnd = weights + static_cast<size_t>(npts);
    const double sumWeight = std::accumulate(weights, weightsEnd, 0.);

    if (fabs(sumWeight) < eps)
    {
      return;
    }

    std::for_each(weights, weightsEnd, [&](double& w) { w /= sumWeight; });
  }
};

//----------------------------------------------------------------------------
// Templated function to generate weights of a triangle mesh.
// This class actually implements the algorithm.
struct ComputeWeightsForTriangleMesh
{
  template <typename PtArrayT>
  void operator()(PtArrayT* ptArray, const double x[3], vtkMVCTriIterator& iter, double* weights)
  {
    // Points are organized {(x,y,z), (x,y,z), ....}
    // Tris are organized {(i,j,k), (i,j,k), ....}
    // Weights per point are computed

    const auto points = vtk::DataArrayTupleRange<3>(ptArray);
    const vtkIdType npts = points.size();

    double* const weightsEnd = weights + static_cast<size_t>(npts);

    // Begin by initializing weights.
    std::fill(weights, weightsEnd, 0.);

    // create local array for storing point-to-vertex vectors and distances
    std::vector<double> dist(static_cast<size_t>(npts));
    std::vector<double> uVec(static_cast<size_t>(3 * npts));
    static constexpr double eps = 0.000000001;
    for (vtkIdType pid = 0; pid < npts; ++pid)
    {
      // point-to-vertex vector
      auto pt = points[pid];
      uVec[3 * pid] = pt[0] - x[0];
      uVec[3 * pid + 1] = pt[1] - x[1];
      uVec[3 * pid + 2] = pt[2] - x[2];

      // distance
      dist[pid] = vtkMath::Norm(uVec.data() + 3 * pid);

      // handle special case when the point is really close to a vertex
      if (dist[pid] < eps)
      {
        weights[pid] = 1.0;
        return;
      }

      // project onto unit sphere
      uVec[3 * pid] /= dist[pid];
      uVec[3 * pid + 1] /= dist[pid];
      uVec[3 * pid + 2] /= dist[pid];
    }

    // Now loop over all triangle to compute weights
    while (iter.Id < iter.NumberOfTriangles)
    {
      // vertex id
      vtkIdType pid0 = iter.Current[0];
      vtkIdType pid1 = iter.Current[1];
      vtkIdType pid2 = iter.Current[2];

      // unit vector
      double* u0 = uVec.data() + 3 * pid0;
      double* u1 = uVec.data() + 3 * pid1;
      double* u2 = uVec.data() + 3 * pid2;

      // edge length
      double l0 = sqrt(vtkMath::Distance2BetweenPoints(u1, u2));
      double l1 = sqrt(vtkMath::Distance2BetweenPoints(u2, u0));
      double l2 = sqrt(vtkMath::Distance2BetweenPoints(u0, u1));

      // angle
      double theta0 = 2.0 * asin(l0 / 2.0);
      double theta1 = 2.0 * asin(l1 / 2.0);
      double theta2 = 2.0 * asin(l2 / 2.0);
      double halfSum = (theta0 + theta1 + theta2) / 2.0;

      // special case when the point lies on the triangle
      if (vtkMath::Pi() - halfSum < eps)
      {
        std::fill(weights, weightsEnd, 0.);

        weights[pid0] = sin(theta0) * dist[pid1] * dist[pid2];
        weights[pid1] = sin(theta1) * dist[pid2] * dist[pid0];
        weights[pid2] = sin(theta2) * dist[pid0] * dist[pid1];

        double sumWeight = weights[pid0] + weights[pid1] + weights[pid2];

        weights[pid0] /= sumWeight;
        weights[pid1] /= sumWeight;
        weights[pid2] /= sumWeight;

        return;
      }

      // coefficient
      double sinHalfSum = sin(halfSum);
      double sinHalfSumSubTheta0 = sin(halfSum - theta0);
      double sinHalfSumSubTheta1 = sin(halfSum - theta1);
      double sinHalfSumSubTheta2 = sin(halfSum - theta2);
      double sinTheta0 = sin(theta0);
      double sinTheta1 = sin(theta1);
      double sinTheta2 = sin(theta2);

      double c0 = 2 * sinHalfSum * sinHalfSumSubTheta0 / sinTheta1 / sinTheta2 - 1;
      double c1 = 2 * sinHalfSum * sinHalfSumSubTheta1 / sinTheta2 / sinTheta0 - 1;
      double c2 = 2 * sinHalfSum * sinHalfSumSubTheta2 / sinTheta0 / sinTheta1 - 1;

      if (fabs(c0) > 1)
      {
        c0 = c0 > 0 ? 1 : -1;
      }
      if (fabs(c1) > 1)
      {
        c1 = c1 > 0 ? 1 : -1;
      }
      if (fabs(c2) > 1)
      {
        c2 = c2 > 0 ? 1 : -1;
      }

      // sign
      double det = vtkMath::Determinant3x3(u0, u1, u2);

      if (fabs(det) < eps)
      {
        ++iter;
        continue;
      }

      double detSign = det > 0 ? 1 : -1;
      double sign0 = detSign * sqrt(1 - c0 * c0);
      double sign1 = detSign * sqrt(1 - c1 * c1);
      double sign2 = detSign * sqrt(1 - c2 * c2);

      // if x lies on the plane of current triangle but outside it, ignore
      // the current triangle.
      if (fabs(sign0) < eps || fabs(sign1) < eps || fabs(sign2) < eps)
      {
        ++iter;
        continue;
      }

      // weight
      weights[pid0] += (theta0 - c1 * theta2 - c2 * theta1) / (dist[pid0] * sinTheta1 * sign2);
      weights[pid1] += (theta1 - c2 * theta0 - c0 * theta2) / (dist[pid1] * sinTheta2 * sign0);
      weights[pid2] += (theta2 - c0 * theta1 - c1 * theta0) / (dist[pid2] * sinTheta0 * sign1);

      //
      // increment id and next triangle
      ++iter;
    }

    // normalize weight
    const double sumWeight = std::accumulate(weights, weightsEnd, 0.);

    if (fabs(sumWeight) < eps)
    {
      return;
    }

    std::for_each(weights, weightsEnd, [&](double& w) { w /= sumWeight; });
  }
};

} // end anon namespace

//----------------------------------------------------------------------------
// Static function to compute weights for triangle mesh (with vtkIdList)
// Satisfy classes' public API.
void vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeights(
  const double x[3], vtkPoints* pts, vtkIdList* tris, double* weights)
{
  // Check the input
  if (!tris)
  {
    vtkGenericWarningMacro("Did not provide triangles");
    return;
  }

  vtkIdType* t = tris->GetPointer(0);
  // Below the vtkCellArray has three entries per triangle {(i,j,k), (i,j,k), ....}
  vtkMVCTriIterator iter(tris->GetNumberOfIds(), 3, t);

  vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeightsForTriangleMesh(
    x, pts, iter, weights);
}

//----------------------------------------------------------------------------
// Static function to compute weights for triangle or polygonal mesh
// (with vtkCellArray). Satisfy classes' public API.
void vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeights(
  const double x[3], vtkPoints* pts, vtkCellArray* cells, double* weights)
{
  // Check the input
  if (!cells)
  {
    vtkGenericWarningMacro("Did not provide cells");
    return;
  }

  // We can use a fast path if:
  // 1) The mesh only consists of triangles, and
  // 2) `cells` is using vtkIdType for storage.
  bool canFastPath =
#ifdef VTK_USE_64BIT_IDS
    cells->IsStorage64Bit();
#else  // VTK_USE_64BIT_IDS
    !cells->IsStorage64Bit();
#endif // VTK_USE_64BIT_IDS

  // check if input is a triangle mesh
  if (canFastPath)
  {
    canFastPath = (cells->IsHomogeneous() == 3);
  }

  if (canFastPath)
  {
#ifdef VTK_USE_64BIT_IDS
    vtkIdType* t = reinterpret_cast<vtkIdType*>(cells->GetConnectivityArray64()->GetPointer(0));
#else  // 32 bit ids
    vtkIdType* t = reinterpret_cast<vtkIdType*>(cells->GetConnectivityArray32()->GetPointer(0));
#endif // VTK_USE_64BIT_IDS

    vtkMVCTriIterator iter(cells->GetNumberOfConnectivityIds(), 3, t);

    vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeightsForTriangleMesh(
      x, pts, iter, weights);
  }
  else
  {
    vtkMVCPolyIterator iter(cells);

    vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeightsForPolygonMesh(
      x, pts, iter, weights);
  }
}

//----------------------------------------------------------------------------
void vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeightsForTriangleMesh(
  const double x[3], vtkPoints* pts, vtkMVCTriIterator& iter, double* weights)
{
  // Check the input
  if (!pts || !weights)
  {
    vtkGenericWarningMacro("Did not provide proper input");
    return;
  }

  // Prepare the arrays
  vtkIdType numPts = pts->GetNumberOfPoints();
  if (numPts <= 0)
  {
    return;
  }

  // float/double points get fast path, everything else goes slow.
  using vtkArrayDispatch::Reals;
  using Dispatcher = vtkArrayDispatch::DispatchByValueType<Reals>;

  ComputeWeightsForTriangleMesh worker;
  if (!Dispatcher::Execute(pts->GetData(), worker, x, iter, weights))
  { // fallback for weird arrays:
    worker(pts->GetData(), x, iter, weights);
  }
}

//----------------------------------------------------------------------------
void vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeightsForPolygonMesh(
  const double x[3], vtkPoints* pts, vtkMVCPolyIterator& iter, double* weights)
{
  // Check the input
  if (!pts || !weights)
  {
    vtkGenericWarningMacro("Did not provide proper input");
    return;
  }

  // Prepare the arrays
  vtkIdType numPts = pts->GetNumberOfPoints();
  if (numPts <= 0)
  {
    return;
  }

  // float/double points get fast path, everything else goes slow.
  using vtkArrayDispatch::Reals;
  using Dispatcher = vtkArrayDispatch::DispatchByValueType<Reals>;

  ComputeWeightsForPolygonMesh worker;
  if (!Dispatcher::Execute(pts->GetData(), worker, x, iter, weights))
  { // fallback for weird arrays:
    worker(pts->GetData(), x, iter, weights);
  }
}

//----------------------------------------------------------------------------
void vtkMeanValueCoordinatesInterpolator::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
}