1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPlane.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkPlane.h"
#include "vtkArrayDispatch.h"
#include "vtkDataArrayRange.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkSMPTools.h"
#include <algorithm>
vtkStandardNewMacro(vtkPlane);
//-----------------------------------------------------------------------------
// Construct plane passing through origin and normal to z-axis.
vtkPlane::vtkPlane()
{
this->Normal[0] = 0.0;
this->Normal[1] = 0.0;
this->Normal[2] = 1.0;
this->Origin[0] = 0.0;
this->Origin[1] = 0.0;
this->Origin[2] = 0.0;
}
//-----------------------------------------------------------------------------
double vtkPlane::DistanceToPlane(double x[3])
{
return this->DistanceToPlane(x, this->GetNormal(), this->GetOrigin());
}
//-----------------------------------------------------------------------------
void vtkPlane::ProjectPoint(
const double x[3], const double origin[3], const double normal[3], double xproj[3])
{
double t, xo[3];
xo[0] = x[0] - origin[0];
xo[1] = x[1] - origin[1];
xo[2] = x[2] - origin[2];
t = vtkMath::Dot(normal, xo);
xproj[0] = x[0] - t * normal[0];
xproj[1] = x[1] - t * normal[1];
xproj[2] = x[2] - t * normal[2];
}
//-----------------------------------------------------------------------------
void vtkPlane::ProjectPoint(const double x[3], double xproj[3])
{
this->ProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}
//-----------------------------------------------------------------------------
void vtkPlane::ProjectVector(
const double v[3], const double vtkNotUsed(origin)[3], const double normal[3], double vproj[3])
{
double t = vtkMath::Dot(v, normal);
double n2 = vtkMath::Dot(normal, normal);
if (n2 == 0)
{
n2 = 1.0;
}
vproj[0] = v[0] - t * normal[0] / n2;
vproj[1] = v[1] - t * normal[1] / n2;
vproj[2] = v[2] - t * normal[2] / n2;
}
//-----------------------------------------------------------------------------
void vtkPlane::ProjectVector(const double v[3], double vproj[3])
{
this->ProjectVector(v, this->GetOrigin(), this->GetNormal(), vproj);
}
//-----------------------------------------------------------------------------
void vtkPlane::Push(double distance)
{
int i;
if (distance == 0.0)
{
return;
}
for (i = 0; i < 3; i++)
{
this->Origin[i] += distance * this->Normal[i];
}
this->Modified();
}
//-----------------------------------------------------------------------------
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal NOT required to
// have magnitude 1.
void vtkPlane::GeneralizedProjectPoint(
const double x[3], const double origin[3], const double normal[3], double xproj[3])
{
double t, xo[3], n2;
xo[0] = x[0] - origin[0];
xo[1] = x[1] - origin[1];
xo[2] = x[2] - origin[2];
t = vtkMath::Dot(normal, xo);
n2 = vtkMath::Dot(normal, normal);
if (n2 != 0)
{
xproj[0] = x[0] - t * normal[0] / n2;
xproj[1] = x[1] - t * normal[1] / n2;
xproj[2] = x[2] - t * normal[2] / n2;
}
else
{
xproj[0] = x[0];
xproj[1] = x[1];
xproj[2] = x[2];
}
}
//-----------------------------------------------------------------------------
void vtkPlane::GeneralizedProjectPoint(const double x[3], double xproj[3])
{
this->GeneralizedProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}
//-----------------------------------------------------------------------------
// Evaluate plane equation for point x[3].
double vtkPlane::EvaluateFunction(double x[3])
{
return (this->Normal[0] * (x[0] - this->Origin[0]) + this->Normal[1] * (x[1] - this->Origin[1]) +
this->Normal[2] * (x[2] - this->Origin[2]));
}
//-----------------------------------------------------------------------------
// Evaluate function gradient at point x[3].
void vtkPlane::EvaluateGradient(double vtkNotUsed(x)[3], double n[3])
{
for (int i = 0; i < 3; i++)
{
n[i] = this->Normal[i];
}
}
#define VTK_PLANE_TOL 1.0e-06
//-----------------------------------------------------------------------------
// Given a line defined by the two points p1,p2; and a plane defined by the
// normal n and point p0, compute an intersection. The parametric
// coordinate along the line is returned in t, and the coordinates of
// intersection are returned in x. A zero is returned if the plane and line
// do not intersect between (0<=t<=1). If the plane and line are parallel,
// zero is returned and t is set to VTK_LARGE_DOUBLE.
int vtkPlane::IntersectWithLine(
const double p1[3], const double p2[3], double n[3], double p0[3], double& t, double x[3])
{
double num, den, p21[3];
double fabsden, fabstolerance;
// Compute line vector
//
p21[0] = p2[0] - p1[0];
p21[1] = p2[1] - p1[1];
p21[2] = p2[2] - p1[2];
// Compute denominator. If ~0, line and plane are parallel.
//
num = vtkMath::Dot(n, p0) - (n[0] * p1[0] + n[1] * p1[1] + n[2] * p1[2]);
den = n[0] * p21[0] + n[1] * p21[1] + n[2] * p21[2];
//
// If denominator with respect to numerator is "zero", then the line and
// plane are considered parallel.
//
// trying to avoid an expensive call to fabs()
if (den < 0.0)
{
fabsden = -den;
}
else
{
fabsden = den;
}
if (num < 0.0)
{
fabstolerance = -num * VTK_PLANE_TOL;
}
else
{
fabstolerance = num * VTK_PLANE_TOL;
}
if (fabsden <= fabstolerance)
{
t = VTK_DOUBLE_MAX;
return 0;
}
// valid intersection
t = num / den;
x[0] = p1[0] + t * p21[0];
x[1] = p1[1] + t * p21[1];
x[2] = p1[2] + t * p21[2];
if (t >= 0.0 && t <= 1.0)
{
return 1;
}
else
{
return 0;
}
}
// Accelerate plane cutting operation
namespace
{
template <typename InputArrayType, typename OutputArrayType>
struct CutWorker
{
using InputValueType = vtk::GetAPIType<InputArrayType>;
using OutputValueType = vtk::GetAPIType<OutputArrayType>;
InputArrayType* Input;
OutputArrayType* Output;
OutputValueType Normal[3];
OutputValueType Origin[3];
CutWorker(InputArrayType* in, OutputArrayType* out)
: Input(in)
, Output(out)
{
}
void operator()(vtkIdType begin, vtkIdType end)
{
const auto srcTuples = vtk::DataArrayTupleRange<3>(this->Input, begin, end);
auto dstValues = vtk::DataArrayValueRange<1>(this->Output, begin, end);
using DstTupleCRefType = typename decltype(srcTuples)::ConstTupleReferenceType;
std::transform(srcTuples.cbegin(), srcTuples.cend(), dstValues.begin(),
[&](DstTupleCRefType tuple) -> OutputValueType {
return this->Normal[0] * (static_cast<OutputValueType>(tuple[0]) - this->Origin[0]) +
this->Normal[1] * (static_cast<OutputValueType>(tuple[1]) - this->Origin[1]) +
this->Normal[2] * (static_cast<OutputValueType>(tuple[2]) - this->Origin[2]);
});
}
};
struct CutFunctionWorker
{
double Normal[3];
double Origin[3];
CutFunctionWorker(double n[3], double o[3])
{
std::copy_n(n, 3, this->Normal);
std::copy_n(o, 3, this->Origin);
}
template <typename InputArrayType, typename OutputArrayType>
void operator()(InputArrayType* input, OutputArrayType* output)
{
VTK_ASSUME(input->GetNumberOfComponents() == 3);
VTK_ASSUME(output->GetNumberOfComponents() == 1);
vtkIdType numTuples = input->GetNumberOfTuples();
CutWorker<InputArrayType, OutputArrayType> cut(input, output);
std::copy_n(Normal, 3, cut.Normal);
std::copy_n(Origin, 3, cut.Origin);
vtkSMPTools::For(0, numTuples, cut);
}
};
} // end anon namespace
//-----------------------------------------------------------------------------
void vtkPlane::EvaluateFunction(vtkDataArray* input, vtkDataArray* output)
{
CutFunctionWorker worker(this->Normal, this->Origin);
typedef vtkTypeList::Create<float, double> InputTypes;
typedef vtkTypeList::Create<float, double> OutputTypes;
typedef vtkArrayDispatch::Dispatch2ByValueType<InputTypes, OutputTypes> MyDispatch;
if (!MyDispatch::Execute(input, output, worker))
{
worker(input, output); // Use vtkDataArray API if dispatch fails.
}
}
//-----------------------------------------------------------------------------
int vtkPlane::IntersectWithLine(const double p1[3], const double p2[3], double& t, double x[3])
{
return this->IntersectWithLine(p1, p2, this->GetNormal(), this->GetOrigin(), t, x);
}
//-----------------------------------------------------------------------------
int vtkPlane::IntersectWithFinitePlane(double n[3], double o[3], double pOrigin[3], double px[3],
double py[3], double x0[3], double x1[3])
{
// Since we are dealing with convex shapes, if there is an intersection a
// single line is produced as output. So all this is necessary is to
// intersect the four bounding lines of the finite line and find the two
// intersection points.
int numInts = 0;
double t, *x = x0;
double xr0[3], xr1[3];
// First line
xr0[0] = pOrigin[0];
xr0[1] = pOrigin[1];
xr0[2] = pOrigin[2];
xr1[0] = px[0];
xr1[1] = px[1];
xr1[2] = px[2];
if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
{
numInts++;
x = x1;
}
// Second line
xr1[0] = py[0];
xr1[1] = py[1];
xr1[2] = py[2];
if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
{
numInts++;
x = x1;
}
if (numInts == 2)
{
return 1;
}
// Third line
xr0[0] = pOrigin[0] + px[0] + py[0];
xr0[1] = pOrigin[1] + px[1] + py[1];
xr0[2] = pOrigin[2] + px[2] + py[2];
if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
{
numInts++;
x = x1;
}
if (numInts == 2)
{
return 1;
}
// Fourth and last line
xr1[0] = px[0];
xr1[1] = px[1];
xr1[2] = px[2];
if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
{
numInts++;
}
if (numInts == 2)
{
return 1;
}
// No intersection has occurred, or a single degenerate point
return 0;
}
//-----------------------------------------------------------------------------
int vtkPlane::IntersectWithFinitePlane(
double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3])
{
return this->IntersectWithFinitePlane(
this->GetNormal(), this->GetOrigin(), pOrigin, px, py, x0, x1);
}
//-----------------------------------------------------------------------------
void vtkPlane::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Normal: (" << this->Normal[0] << ", " << this->Normal[1] << ", "
<< this->Normal[2] << ")\n";
os << indent << "Origin: (" << this->Origin[0] << ", " << this->Origin[1] << ", "
<< this->Origin[2] << ")\n";
}
|