File: vtkPlane.cxx

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (395 lines) | stat: -rw-r--r-- 11,184 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkPlane.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkPlane.h"

#include "vtkArrayDispatch.h"
#include "vtkDataArrayRange.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkSMPTools.h"

#include <algorithm>

vtkStandardNewMacro(vtkPlane);

//-----------------------------------------------------------------------------
// Construct plane passing through origin and normal to z-axis.
vtkPlane::vtkPlane()
{
  this->Normal[0] = 0.0;
  this->Normal[1] = 0.0;
  this->Normal[2] = 1.0;

  this->Origin[0] = 0.0;
  this->Origin[1] = 0.0;
  this->Origin[2] = 0.0;
}

//-----------------------------------------------------------------------------
double vtkPlane::DistanceToPlane(double x[3])
{
  return this->DistanceToPlane(x, this->GetNormal(), this->GetOrigin());
}

//-----------------------------------------------------------------------------
void vtkPlane::ProjectPoint(
  const double x[3], const double origin[3], const double normal[3], double xproj[3])
{
  double t, xo[3];

  xo[0] = x[0] - origin[0];
  xo[1] = x[1] - origin[1];
  xo[2] = x[2] - origin[2];

  t = vtkMath::Dot(normal, xo);

  xproj[0] = x[0] - t * normal[0];
  xproj[1] = x[1] - t * normal[1];
  xproj[2] = x[2] - t * normal[2];
}

//-----------------------------------------------------------------------------
void vtkPlane::ProjectPoint(const double x[3], double xproj[3])
{
  this->ProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}

//-----------------------------------------------------------------------------
void vtkPlane::ProjectVector(
  const double v[3], const double vtkNotUsed(origin)[3], const double normal[3], double vproj[3])
{
  double t = vtkMath::Dot(v, normal);
  double n2 = vtkMath::Dot(normal, normal);
  if (n2 == 0)
  {
    n2 = 1.0;
  }
  vproj[0] = v[0] - t * normal[0] / n2;
  vproj[1] = v[1] - t * normal[1] / n2;
  vproj[2] = v[2] - t * normal[2] / n2;
}

//-----------------------------------------------------------------------------
void vtkPlane::ProjectVector(const double v[3], double vproj[3])
{
  this->ProjectVector(v, this->GetOrigin(), this->GetNormal(), vproj);
}

//-----------------------------------------------------------------------------
void vtkPlane::Push(double distance)
{
  int i;

  if (distance == 0.0)
  {
    return;
  }
  for (i = 0; i < 3; i++)
  {
    this->Origin[i] += distance * this->Normal[i];
  }
  this->Modified();
}

//-----------------------------------------------------------------------------
// Project a point x onto plane defined by origin and normal. The
// projected point is returned in xproj. NOTE : normal NOT required to
// have magnitude 1.
void vtkPlane::GeneralizedProjectPoint(
  const double x[3], const double origin[3], const double normal[3], double xproj[3])
{
  double t, xo[3], n2;

  xo[0] = x[0] - origin[0];
  xo[1] = x[1] - origin[1];
  xo[2] = x[2] - origin[2];

  t = vtkMath::Dot(normal, xo);
  n2 = vtkMath::Dot(normal, normal);

  if (n2 != 0)
  {
    xproj[0] = x[0] - t * normal[0] / n2;
    xproj[1] = x[1] - t * normal[1] / n2;
    xproj[2] = x[2] - t * normal[2] / n2;
  }
  else
  {
    xproj[0] = x[0];
    xproj[1] = x[1];
    xproj[2] = x[2];
  }
}

//-----------------------------------------------------------------------------
void vtkPlane::GeneralizedProjectPoint(const double x[3], double xproj[3])
{
  this->GeneralizedProjectPoint(x, this->GetOrigin(), this->GetNormal(), xproj);
}

//-----------------------------------------------------------------------------
// Evaluate plane equation for point x[3].
double vtkPlane::EvaluateFunction(double x[3])
{
  return (this->Normal[0] * (x[0] - this->Origin[0]) + this->Normal[1] * (x[1] - this->Origin[1]) +
    this->Normal[2] * (x[2] - this->Origin[2]));
}

//-----------------------------------------------------------------------------
// Evaluate function gradient at point x[3].
void vtkPlane::EvaluateGradient(double vtkNotUsed(x)[3], double n[3])
{
  for (int i = 0; i < 3; i++)
  {
    n[i] = this->Normal[i];
  }
}

#define VTK_PLANE_TOL 1.0e-06

//-----------------------------------------------------------------------------
// Given a line defined by the two points p1,p2; and a plane defined by the
// normal n and point p0, compute an intersection. The parametric
// coordinate along the line is returned in t, and the coordinates of
// intersection are returned in x. A zero is returned if the plane and line
// do not intersect between (0<=t<=1). If the plane and line are parallel,
// zero is returned and t is set to VTK_LARGE_DOUBLE.
int vtkPlane::IntersectWithLine(
  const double p1[3], const double p2[3], double n[3], double p0[3], double& t, double x[3])
{
  double num, den, p21[3];
  double fabsden, fabstolerance;

  // Compute line vector
  //
  p21[0] = p2[0] - p1[0];
  p21[1] = p2[1] - p1[1];
  p21[2] = p2[2] - p1[2];

  // Compute denominator.  If ~0, line and plane are parallel.
  //
  num = vtkMath::Dot(n, p0) - (n[0] * p1[0] + n[1] * p1[1] + n[2] * p1[2]);
  den = n[0] * p21[0] + n[1] * p21[1] + n[2] * p21[2];
  //
  // If denominator with respect to numerator is "zero", then the line and
  // plane are considered parallel.
  //

  // trying to avoid an expensive call to fabs()
  if (den < 0.0)
  {
    fabsden = -den;
  }
  else
  {
    fabsden = den;
  }
  if (num < 0.0)
  {
    fabstolerance = -num * VTK_PLANE_TOL;
  }
  else
  {
    fabstolerance = num * VTK_PLANE_TOL;
  }
  if (fabsden <= fabstolerance)
  {
    t = VTK_DOUBLE_MAX;
    return 0;
  }

  // valid intersection
  t = num / den;

  x[0] = p1[0] + t * p21[0];
  x[1] = p1[1] + t * p21[1];
  x[2] = p1[2] + t * p21[2];

  if (t >= 0.0 && t <= 1.0)
  {
    return 1;
  }
  else
  {
    return 0;
  }
}

// Accelerate plane cutting operation
namespace
{
template <typename InputArrayType, typename OutputArrayType>
struct CutWorker
{
  using InputValueType = vtk::GetAPIType<InputArrayType>;
  using OutputValueType = vtk::GetAPIType<OutputArrayType>;

  InputArrayType* Input;
  OutputArrayType* Output;
  OutputValueType Normal[3];
  OutputValueType Origin[3];

  CutWorker(InputArrayType* in, OutputArrayType* out)
    : Input(in)
    , Output(out)
  {
  }
  void operator()(vtkIdType begin, vtkIdType end)
  {
    const auto srcTuples = vtk::DataArrayTupleRange<3>(this->Input, begin, end);
    auto dstValues = vtk::DataArrayValueRange<1>(this->Output, begin, end);

    using DstTupleCRefType = typename decltype(srcTuples)::ConstTupleReferenceType;

    std::transform(srcTuples.cbegin(), srcTuples.cend(), dstValues.begin(),
      [&](DstTupleCRefType tuple) -> OutputValueType {
        return this->Normal[0] * (static_cast<OutputValueType>(tuple[0]) - this->Origin[0]) +
          this->Normal[1] * (static_cast<OutputValueType>(tuple[1]) - this->Origin[1]) +
          this->Normal[2] * (static_cast<OutputValueType>(tuple[2]) - this->Origin[2]);
      });
  }
};

struct CutFunctionWorker
{
  double Normal[3];
  double Origin[3];
  CutFunctionWorker(double n[3], double o[3])
  {
    std::copy_n(n, 3, this->Normal);
    std::copy_n(o, 3, this->Origin);
  }
  template <typename InputArrayType, typename OutputArrayType>
  void operator()(InputArrayType* input, OutputArrayType* output)
  {
    VTK_ASSUME(input->GetNumberOfComponents() == 3);
    VTK_ASSUME(output->GetNumberOfComponents() == 1);
    vtkIdType numTuples = input->GetNumberOfTuples();
    CutWorker<InputArrayType, OutputArrayType> cut(input, output);
    std::copy_n(Normal, 3, cut.Normal);
    std::copy_n(Origin, 3, cut.Origin);
    vtkSMPTools::For(0, numTuples, cut);
  }
};
} // end anon namespace

//-----------------------------------------------------------------------------
void vtkPlane::EvaluateFunction(vtkDataArray* input, vtkDataArray* output)
{
  CutFunctionWorker worker(this->Normal, this->Origin);
  typedef vtkTypeList::Create<float, double> InputTypes;
  typedef vtkTypeList::Create<float, double> OutputTypes;
  typedef vtkArrayDispatch::Dispatch2ByValueType<InputTypes, OutputTypes> MyDispatch;
  if (!MyDispatch::Execute(input, output, worker))
  {
    worker(input, output); // Use vtkDataArray API if dispatch fails.
  }
}

//-----------------------------------------------------------------------------
int vtkPlane::IntersectWithLine(const double p1[3], const double p2[3], double& t, double x[3])
{
  return this->IntersectWithLine(p1, p2, this->GetNormal(), this->GetOrigin(), t, x);
}

//-----------------------------------------------------------------------------
int vtkPlane::IntersectWithFinitePlane(double n[3], double o[3], double pOrigin[3], double px[3],
  double py[3], double x0[3], double x1[3])
{
  // Since we are dealing with convex shapes, if there is an intersection a
  // single line is produced as output. So all this is necessary is to
  // intersect the four bounding lines of the finite line and find the two
  // intersection points.
  int numInts = 0;
  double t, *x = x0;
  double xr0[3], xr1[3];

  // First line
  xr0[0] = pOrigin[0];
  xr0[1] = pOrigin[1];
  xr0[2] = pOrigin[2];
  xr1[0] = px[0];
  xr1[1] = px[1];
  xr1[2] = px[2];
  if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
  {
    numInts++;
    x = x1;
  }

  // Second line
  xr1[0] = py[0];
  xr1[1] = py[1];
  xr1[2] = py[2];
  if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
  {
    numInts++;
    x = x1;
  }
  if (numInts == 2)
  {
    return 1;
  }

  // Third line
  xr0[0] = pOrigin[0] + px[0] + py[0];
  xr0[1] = pOrigin[1] + px[1] + py[1];
  xr0[2] = pOrigin[2] + px[2] + py[2];
  if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
  {
    numInts++;
    x = x1;
  }
  if (numInts == 2)
  {
    return 1;
  }

  // Fourth and last line
  xr1[0] = px[0];
  xr1[1] = px[1];
  xr1[2] = px[2];
  if (vtkPlane::IntersectWithLine(xr0, xr1, n, o, t, x))
  {
    numInts++;
  }
  if (numInts == 2)
  {
    return 1;
  }

  // No intersection has occurred, or a single degenerate point
  return 0;
}

//-----------------------------------------------------------------------------
int vtkPlane::IntersectWithFinitePlane(
  double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3])
{
  return this->IntersectWithFinitePlane(
    this->GetNormal(), this->GetOrigin(), pOrigin, px, py, x0, x1);
}

//-----------------------------------------------------------------------------
void vtkPlane::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "Normal: (" << this->Normal[0] << ", " << this->Normal[1] << ", "
     << this->Normal[2] << ")\n";

  os << indent << "Origin: (" << this->Origin[0] << ", " << this->Origin[1] << ", "
     << this->Origin[2] << ")\n";
}