1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPlane.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkPlane
* @brief perform various plane computations
*
* vtkPlane provides methods for various plane computations. These include
* projecting points onto a plane, evaluating the plane equation, and
* returning plane normal. vtkPlane is a concrete implementation of the
* abstract class vtkImplicitFunction.
*/
#ifndef vtkPlane_h
#define vtkPlane_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkImplicitFunction.h"
class VTKCOMMONDATAMODEL_EXPORT vtkPlane : public vtkImplicitFunction
{
public:
/**
* Construct plane passing through origin and normal to z-axis.
*/
static vtkPlane* New();
vtkTypeMacro(vtkPlane, vtkImplicitFunction);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* Evaluate plane equation for point x[3].
*/
using vtkImplicitFunction::EvaluateFunction;
void EvaluateFunction(vtkDataArray* input, vtkDataArray* output) override;
double EvaluateFunction(double x[3]) override;
//@}
/**
* Evaluate function gradient at point x[3].
*/
void EvaluateGradient(double x[3], double g[3]) override;
//@{
/**
* Set/get plane normal. Plane is defined by point and normal.
*/
vtkSetVector3Macro(Normal, double);
vtkGetVectorMacro(Normal, double, 3);
//@}
//@{
/**
* Set/get point through which plane passes. Plane is defined by point
* and normal.
*/
vtkSetVector3Macro(Origin, double);
vtkGetVectorMacro(Origin, double, 3);
//@}
/**
* Translate the plane in the direction of the normal by the
* distance specified. Negative values move the plane in the
* opposite direction.
*/
void Push(double distance);
//@{
/**
* Project a point x onto plane defined by origin and normal. The
* projected point is returned in xproj. NOTE : normal assumed to
* have magnitude 1.
*/
static void ProjectPoint(
const double x[3], const double origin[3], const double normal[3], double xproj[3]);
void ProjectPoint(const double x[3], double xproj[3]);
//@}
//@{
/**
* Project a vector v onto plane defined by origin and normal. The
* projected vector is returned in vproj.
*/
static void ProjectVector(
const double v[3], const double origin[3], const double normal[3], double vproj[3]);
void ProjectVector(const double v[3], double vproj[3]);
//@}
//@{
/**
* Project a point x onto plane defined by origin and normal. The
* projected point is returned in xproj. NOTE : normal does NOT have to
* have magnitude 1.
*/
static void GeneralizedProjectPoint(
const double x[3], const double origin[3], const double normal[3], double xproj[3]);
void GeneralizedProjectPoint(const double x[3], double xproj[3]);
//@}
/**
* Quick evaluation of plane equation n(x-origin)=0.
*/
static double Evaluate(double normal[3], double origin[3], double x[3]);
//@{
/**
* Return the distance of a point x to a plane defined by n(x-p0) = 0. The
* normal n[3] must be magnitude=1.
*/
static double DistanceToPlane(double x[3], double n[3], double p0[3]);
double DistanceToPlane(double x[3]);
//@}
//@{
/**
* Given a line defined by the two points p1,p2; and a plane defined by the
* normal n and point p0, compute an intersection. The parametric
* coordinate along the line is returned in t, and the coordinates of
* intersection are returned in x. A zero is returned if the plane and line
* do not intersect between (0<=t<=1). If the plane and line are parallel,
* zero is returned and t is set to VTK_LARGE_DOUBLE.
*/
static int IntersectWithLine(
const double p1[3], const double p2[3], double n[3], double p0[3], double& t, double x[3]);
int IntersectWithLine(const double p1[3], const double p2[3], double& t, double x[3]);
//@}
//@{
/**
* Given two planes, one infinite and one finite, defined by the normal n
* and point o (infinite plane), and the second finite plane1 defined by
* the three points (pOrigin,px,py), compute a line of intersection (if
* any). The line of intersection is defined by the return values
* (x0,x1). If there is no intersection, then zero is returned; otherwise
* non-zero. There are two variants of this method. The static function
* operates on the supplied function parameters; the non-static operates on
* this instance of vtkPlane (and its associated origin and normal).
*/
static int IntersectWithFinitePlane(double n[3], double o[3], double pOrigin[3], double px[3],
double py[3], double x0[3], double x1[3]);
int IntersectWithFinitePlane(
double pOrigin[3], double px[3], double py[3], double x0[3], double x1[3]);
//@}
protected:
vtkPlane();
~vtkPlane() override {}
double Normal[3];
double Origin[3];
private:
vtkPlane(const vtkPlane&) = delete;
void operator=(const vtkPlane&) = delete;
};
// Generally the normal should be normalized
inline double vtkPlane::Evaluate(double normal[3], double origin[3], double x[3])
{
return normal[0] * (x[0] - origin[0]) + normal[1] * (x[1] - origin[1]) +
normal[2] * (x[2] - origin[2]);
}
// Assumes normal is normalized
inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3])
{
#define vtkPlaneAbs(x) ((x) < 0 ? -(x) : (x))
return (vtkPlaneAbs(n[0] * (x[0] - p0[0]) + n[1] * (x[1] - p0[1]) + n[2] * (x[2] - p0[2])));
}
#endif
|