File: vtkPolyhedron.cxx

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (2373 lines) | stat: -rw-r--r-- 69,186 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
/*=========================================================================

Program:   Visualization Toolkit
Module:    vtkPolyhedron.cxx

Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkPolyhedron.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCellLocator.h"
#include "vtkEdgeTable.h"
#include "vtkGenericCell.h"
#include "vtkIdTypeArray.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkMeanValueCoordinatesInterpolator.h"
#include "vtkOrderedTriangulator.h"
#include "vtkPointData.h"
#include "vtkPointLocator.h"
#include "vtkPolyData.h"
#include "vtkPolygon.h"
#include "vtkQuad.h"
#include "vtkTetra.h"
#include "vtkTriangle.h"
#include "vtkVector.h"

#include <functional>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <vector>

using namespace std;

vtkStandardNewMacro(vtkPolyhedron);

// Special typedef
typedef vector<vtkIdType> vtkIdVectorType;
class vtkPointIdMap : public map<vtkIdType, vtkIdType>
{
};

// an edge consists of two id's and their order
// is *not* important. To that end special hash and
// equals functions have been made
// typedef std::pair<vtkIdType, vtkIdType> Edge;

struct Edge : public std::pair<vtkIdType, vtkIdType>
{
public:
  Edge() = default;
  Edge(vtkIdType a, vtkIdType b)
    : std::pair<vtkIdType, vtkIdType>(a, b)
  {
  }
  Edge(vtkCell* edge)
    : std::pair<vtkIdType, vtkIdType>(edge->GetPointId(0), edge->GetPointId(1))
  {
  }
  friend ostream& operator<<(ostream& stream, const Edge& e)
  {
    stream << e.first << " - " << e.second;
    return stream;
  }
};

struct hash_fn
{
  size_t operator()(Edge const& p) const
  {
    size_t i = (size_t)p.first;
    size_t j = (size_t)p.second;

    // first make order-independent, i.e. hash(i,j) == hash(j,i)
    if (i < j)
    {
      size_t tmp = i;
      i = j;
      j = tmp;
    }

    // then XOR both together , multiplied by two primes to try to prevent collisions
    return (17 * i) ^ (31 * j);
  }
};

struct equal_fn
{
  bool operator()(Edge const& e1, Edge const& e2) const
  {
    return (e1.first == e2.first && e1.second == e2.second) ||
      (e1.second == e2.first && e1.first == e2.second);
  }
};

// these typedefs are for the contouoring code. There the order of two edges does not matter
// so we use the specially crafted equals and hash functions defined above.

typedef vector<Edge> EdgeVector;

typedef vector<EdgeVector> FaceEdgesVector;
typedef unordered_map<Edge, set<vtkIdType>, hash_fn, equal_fn> EdgeFaceSetMap;

typedef unordered_multimap<vtkIdType, Edge> PointIndexEdgeMultiMap;
typedef unordered_map<Edge, vtkIdType, hash_fn, equal_fn> EdgePointIndexMap;

typedef unordered_set<Edge, hash_fn, equal_fn> EdgeSet;

typedef vtkIdVectorType Face;
typedef vector<Face> FaceVector;

//// Special class for iterating through polyhedron faces
////----------------------------------------------------------------------------
class vtkPolyhedronFaceIterator
{
public:
  vtkIdType CurrentPolygonSize;
  vtkIdType* Polygon;
  vtkIdType* Current;
  vtkIdType NumberOfPolygons;
  vtkIdType Id;

  vtkPolyhedronFaceIterator(vtkIdType numFaces, vtkIdType* t)
  {
    this->CurrentPolygonSize = t[0];
    this->Polygon = t;
    this->Current = t + 1;
    this->NumberOfPolygons = numFaces;
    this->Id = 0;
  }
  vtkIdType* operator++()
  {
    this->Current += this->CurrentPolygonSize + 1;
    this->Polygon = this->Current - 1;
    this->Id++;
    if (this->Id < this->NumberOfPolygons)
    {
      this->CurrentPolygonSize = this->Polygon[0];
    }
    else
    {
      this->CurrentPolygonSize = VTK_ID_MAX;
    }
    return this->Current;
  }
};

//----------------------------------------------------------------------------
// Construct the hexahedron with eight points.
vtkPolyhedron::vtkPolyhedron()
{
  this->Line = vtkLine::New();
  this->Triangle = vtkTriangle::New();
  this->Quad = vtkQuad::New();
  this->Polygon = vtkPolygon::New();
  this->Tetra = vtkTetra::New();
  this->GlobalFaces = vtkIdTypeArray::New();
  this->FaceLocations = vtkIdTypeArray::New();
  this->PointIdMap = new vtkPointIdMap;

  this->EdgesGenerated = 0;
  this->EdgeTable = vtkEdgeTable::New();
  this->Edges = vtkIdTypeArray::New();
  this->Edges->SetNumberOfComponents(2);
  this->EdgeFaces = vtkIdTypeArray::New();
  this->EdgeFaces->SetNumberOfComponents(2);

  this->FacesGenerated = 0;
  this->Faces = vtkIdTypeArray::New();

  this->BoundsComputed = 0;

  this->PolyDataConstructed = 0;
  this->PolyData = vtkPolyData::New();
  this->Polys = vtkCellArray::New();
  this->LocatorConstructed = 0;
  this->CellLocator = vtkCellLocator::New();
  this->CellIds = vtkIdList::New();
  this->Cell = vtkGenericCell::New();
}

//----------------------------------------------------------------------------
vtkPolyhedron::~vtkPolyhedron()
{
  this->Line->Delete();
  this->Triangle->Delete();
  this->Quad->Delete();
  this->Polygon->Delete();
  this->Tetra->Delete();
  this->GlobalFaces->Delete();
  this->FaceLocations->Delete();
  delete this->PointIdMap;
  this->EdgeTable->Delete();
  this->Edges->Delete();
  this->EdgeFaces->Delete();
  this->Faces->Delete();
  this->PolyData->Delete();
  this->Polys->Delete();
  this->CellLocator->Delete();
  this->CellIds->Delete();
  this->Cell->Delete();
}

//----------------------------------------------------------------------------
void vtkPolyhedron::ComputeBounds()
{
  if (this->BoundsComputed)
  {
    return;
  }

  this->Superclass::GetBounds(); // stored in this->Bounds
  this->BoundsComputed = 1;
}

//----------------------------------------------------------------------------
void vtkPolyhedron::ConstructPolyData()
{
  if (this->PolyDataConstructed)
  {
    return;
  }

  // Here's a trick, we're going to use the Faces array as the connectivity
  // array. Note that the Faces have an added nfaces value at the beginning
  // of the array. Other than that,it's a vtkCellArray. So we play games
  // with the pointers.
  this->GenerateFaces();

  if (this->Faces->GetNumberOfTuples() == 0)
  {
    return;
  }

  const vtkIdType numCells = *this->Faces->GetPointer(0);
  const vtkIdType connSize = this->Faces->GetNumberOfValues() - numCells - 1;
  this->Polys->AllocateExact(numCells, connSize);
  this->Polys->ImportLegacyFormat(this->Faces->GetPointer(1), this->Faces->GetNumberOfValues() - 1);

  // Standard setup
  this->PolyData->Initialize();
  this->PolyData->SetPoints(this->Points);
  this->PolyData->SetPolys(this->Polys);

  this->PolyDataConstructed = 1;
}

vtkPolyData* vtkPolyhedron::GetPolyData()
{
  if (!this->PolyDataConstructed)
  {
    this->ConstructPolyData();
  }

  return this->PolyData;
}
//----------------------------------------------------------------------------
void vtkPolyhedron::ConstructLocator()
{
  if (this->LocatorConstructed)
  {
    return;
  }

  this->ConstructPolyData();

  // With the polydata set up, we can assign it to the locator
  this->CellLocator->Initialize();
  this->CellLocator->SetDataSet(this->PolyData);
  this->CellLocator->BuildLocator();

  this->LocatorConstructed = 1;
}

//----------------------------------------------------------------------------
void vtkPolyhedron::ComputeParametricCoordinate(const double x[3], double pc[3])
{
  this->ComputeBounds();
  double* bounds = this->Bounds;

  pc[0] = (x[0] - bounds[0]) / (bounds[1] - bounds[0]);
  pc[1] = (x[1] - bounds[2]) / (bounds[3] - bounds[2]);
  pc[2] = (x[2] - bounds[4]) / (bounds[5] - bounds[4]);
}

//----------------------------------------------------------------------------
void vtkPolyhedron::ComputePositionFromParametricCoordinate(const double pc[3], double x[3])
{
  this->ComputeBounds();
  double* bounds = this->Bounds;
  x[0] = (1 - pc[0]) * bounds[0] + pc[0] * bounds[1];
  x[1] = (1 - pc[1]) * bounds[2] + pc[1] * bounds[3];
  x[2] = (1 - pc[2]) * bounds[4] + pc[2] * bounds[5];
}

//----------------------------------------------------------------------------
// Should be called by GetCell() prior to any other method invocation and after the
// points, point ids, and faces have been loaded.
void vtkPolyhedron::Initialize()
{
  // Clear out any remaining memory.
  this->PointIdMap->clear();

  // We need to create a reverse map from the point ids to their canonical cell
  // ids. This is a fancy way of saying that we have to be able to rapidly go
  // from a PointId[i] to the location i in the cell.
  vtkIdType i, id, numPointIds = this->PointIds->GetNumberOfIds();
  for (i = 0; i < numPointIds; ++i)
  {
    id = this->PointIds->GetId(i);
    (*this->PointIdMap)[id] = i;
  }

  // Edges have to be reset
  this->EdgesGenerated = 0;
  this->EdgeTable->Reset();
  this->Edges->Reset();
  this->EdgeFaces->Reset();
  this->Faces->Reset();

  // Polys have to be reset
  this->Polys->Reset();

  // Faces may need renumbering later. This means converting the face ids from
  // global ids to local, canonical ids.
  this->FacesGenerated = 0;

  // No bounds have been computed as of yet.
  this->BoundsComputed = 0;

  // No supplemental geometric stuff created
  this->PolyDataConstructed = 0;
  this->LocatorConstructed = 0;
}

//----------------------------------------------------------------------------
int vtkPolyhedron::GetNumberOfEdges()
{
  // Make sure edges have been generated.
  if (!this->EdgesGenerated)
  {
    this->GenerateEdges();
  }

  return static_cast<int>(this->Edges->GetNumberOfTuples());
}

//----------------------------------------------------------------------------
// This method requires that GenerateEdges() is invoked beforehand.
vtkCell* vtkPolyhedron::GetEdge(int edgeId)
{
  // Make sure edges have been generated.
  if (!this->EdgesGenerated)
  {
    this->GenerateEdges();
  }

  // Make sure requested edge is within range
  vtkIdType numEdges = this->Edges->GetNumberOfTuples();

  if (edgeId < 0 || edgeId >= numEdges)
  {
    return nullptr;
  }

  // Return the requested edge
  vtkIdType edge[2];
  this->Edges->GetTypedTuple(edgeId, edge);

  // Recall that edge tuples are stored in canonical numbering
  for (int i = 0; i < 2; i++)
  {
    this->Line->PointIds->SetId(i, this->PointIds->GetId(edge[i]));
    this->Line->Points->SetPoint(i, this->Points->GetPoint(edge[i]));
  }

  return this->Line;
}

//----------------------------------------------------------------------------
int vtkPolyhedron::GenerateEdges()
{
  if (this->EdgesGenerated)
  {
    return this->Edges->GetNumberOfTuples();
  }

  // check the number of faces and return if there aren't any
  if (this->GlobalFaces->GetNumberOfTuples() == 0 || this->GlobalFaces->GetValue(0) <= 0)
  {
    return 0;
  }

  // Loop over all faces, inserting edges into the table
  vtkIdType* faces = this->GlobalFaces->GetPointer(0);
  vtkIdType nfaces = faces[0];
  vtkIdType* face = faces + 1;
  vtkIdType fid, i, edge[2], npts, edgeFaces[2], edgeId;
  edgeFaces[1] = -1;

  this->EdgeTable->InitEdgeInsertion(this->Points->GetNumberOfPoints(), 1);
  for (fid = 0; fid < nfaces; ++fid)
  {
    npts = face[0];
    for (i = 1; i <= npts; ++i)
    {
      edge[0] = (*this->PointIdMap)[face[i]];
      edge[1] = (*this->PointIdMap)[(i != npts ? face[i + 1] : face[1])];
      edgeFaces[0] = fid;
      if ((edgeId = this->EdgeTable->IsEdge(edge[0], edge[1])) == (-1))
      {
        edgeId = this->EdgeTable->InsertEdge(edge[0], edge[1]);
        this->Edges->InsertNextTypedTuple(edge);
        this->EdgeFaces->InsertTypedTuple(edgeId, edgeFaces);
      }
      else
      {
        this->EdgeFaces->SetComponent(edgeId, 1, fid);
      }
    }
    face += face[0] + 1;
  } // for all faces

  // Okay all done
  this->EdgesGenerated = 1;
  return this->Edges->GetNumberOfTuples();
}

//----------------------------------------------------------------------------
int vtkPolyhedron::GetNumberOfFaces()
{
  // Make sure faces have been generated.
  if (!this->FacesGenerated)
  {
    this->GenerateFaces();
  }

  if (this->GlobalFaces->GetNumberOfTuples() == 0)
  {
    return 0;
  }

  return static_cast<int>(this->GlobalFaces->GetValue(0));
}

//----------------------------------------------------------------------------
void vtkPolyhedron::GenerateFaces()
{
  if (this->FacesGenerated)
  {
    return;
  }

  if (this->GlobalFaces->GetNumberOfTuples() == 0)
  {
    return;
  }

  // Basically we just run through the faces and change the global ids to the
  // canonical ids using the PointIdMap.
  this->Faces->SetNumberOfTuples(this->GlobalFaces->GetNumberOfTuples());
  vtkIdType* gFaces = this->GlobalFaces->GetPointer(0);
  vtkIdType* faces = this->Faces->GetPointer(0);
  vtkIdType nfaces = gFaces[0];
  faces[0] = nfaces;
  vtkIdType* gFace = gFaces + 1;
  vtkIdType* face = faces + 1;
  vtkIdType fid, i, id, npts;

  for (fid = 0; fid < nfaces; ++fid)
  {
    npts = gFace[0];
    face[0] = npts;
    for (i = 1; i <= npts; ++i)
    {
      id = (*this->PointIdMap)[gFace[i]];
      face[i] = id;
    }
    gFace += gFace[0] + 1;
    face += face[0] + 1;
  } // for all faces

  // Okay we've done the deed
  this->FacesGenerated = 1;
}

//----------------------------------------------------------------------------
vtkCell* vtkPolyhedron::GetFace(int faceId)
{
  if (faceId < 0 || faceId >= this->GlobalFaces->GetValue(0))
  {
    return nullptr;
  }

  this->GenerateFaces();

  // Okay load up the polygon
  vtkIdType i, p, loc = this->FaceLocations->GetValue(faceId);
  vtkIdType* face = this->GlobalFaces->GetPointer(loc);

  this->Polygon->PointIds->SetNumberOfIds(face[0]);
  this->Polygon->Points->SetNumberOfPoints(face[0]);

  // grab faces in global id space
  for (i = 0; i < face[0]; ++i)
  {
    this->Polygon->PointIds->SetId(i, face[i + 1]);
    p = (*this->PointIdMap)[face[i + 1]];
    this->Polygon->Points->SetPoint(i, this->Points->GetPoint(p));
  }

  return this->Polygon;
}

//----------------------------------------------------------------------------
// Specify the faces for this cell.
void vtkPolyhedron::SetFaces(vtkIdType* faces)
{
  // Set up face structure
  this->GlobalFaces->Reset();
  this->FaceLocations->Reset();

  if (!faces)
  {
    return;
  }

  vtkIdType nfaces = faces[0];
  this->FaceLocations->SetNumberOfValues(nfaces);

  this->GlobalFaces->InsertNextValue(nfaces);
  vtkIdType* face = faces + 1;
  vtkIdType faceLoc = 1;
  vtkIdType i, fid, npts;

  for (fid = 0; fid < nfaces; ++fid)
  {
    npts = face[0];
    this->GlobalFaces->InsertNextValue(npts);
    for (i = 1; i <= npts; ++i)
    {
      this->GlobalFaces->InsertNextValue(face[i]);
    }
    this->FaceLocations->SetValue(fid, faceLoc);

    faceLoc += face[0] + 1;
    face = faces + faceLoc;
  } // for all faces
}

//----------------------------------------------------------------------------
// Return the list of faces for this cell.
vtkIdType* vtkPolyhedron::GetFaces()
{
  if (!this->GlobalFaces->GetNumberOfTuples())
  {
    return nullptr;
  }

  return this->GlobalFaces->GetPointer(0);
}

//----------------------------------------------------------------------------
int vtkPolyhedron::IntersectWithLine(const double p1[3], const double p2[3], double tol,
  double& tMin, double xMin[3], double pc[3], int& subId)
{
  // It's easiest if this is done in canonical space
  this->GenerateFaces();

  // Loop over all the faces, intersecting them in turn.
  vtkIdType* face = this->Faces->GetPointer(0);
  vtkIdType nfaces = *face++;
  vtkIdType npts, i, fid, numHits = 0;
  double t = VTK_FLOAT_MAX;
  double x[3];

  tMin = VTK_FLOAT_MAX;
  for (fid = 0; fid < nfaces; ++fid)
  {
    npts = face[0];
    vtkIdType hit = 0;
    switch (npts)
    {
      case 3: // triangle
        for (i = 0; i < 3; i++)
        {
          this->Triangle->Points->SetPoint(i, this->Points->GetPoint(face[i + 1]));
          this->Triangle->PointIds->SetId(i, face[i + 1]);
        }
        hit = this->Triangle->IntersectWithLine(p1, p2, tol, t, x, pc, subId);
        break;
      case 4: // quad
        for (i = 0; i < 4; i++)
        {
          this->Quad->Points->SetPoint(i, this->Points->GetPoint(face[i + 1]));
          this->Quad->PointIds->SetId(i, face[i + 1]);
        }
        hit = this->Quad->IntersectWithLine(p1, p2, tol, t, x, pc, subId);
        break;
      default: // general polygon
        this->Polygon->GetPoints()->SetNumberOfPoints(npts);
        this->Polygon->GetPointIds()->SetNumberOfIds(npts);
        for (i = 0; i < npts; i++)
        {
          this->Polygon->Points->SetPoint(i, this->Points->GetPoint(face[i + 1]));
          this->Polygon->PointIds->SetId(i, face[i + 1]);
        }
        hit = this->Polygon->IntersectWithLine(p1, p2, tol, t, x, pc, subId);
        break;
    }

    // Update minimum hit
    if (hit)
    {
      numHits++;
      if (t < tMin)
      {
        tMin = t;
        xMin[0] = x[0];
        xMin[1] = x[1];
        xMin[2] = x[2];
      }
    }

    face += face[0] + 1;
  } // for all faces

  // Compute parametric coordinates
  this->ComputeParametricCoordinate(xMin, pc);

  return (numHits > 0);
}

#define VTK_MAX_ITER 10 // Maximum iterations for ray-firing
#define VTK_VOTE_THRESHOLD 3

//----------------------------------------------------------------------------
// Shoot random rays and count the number of intersections
int vtkPolyhedron::IsInside(const double x[3], double tolerance)
{
  // do a quick bounds check
  this->ComputeBounds();
  double* bounds = this->Bounds;
  if (x[0] < bounds[0] || x[0] > bounds[1] || x[1] < bounds[2] || x[1] > bounds[3] ||
    x[2] < bounds[4] || x[2] > bounds[5])
  {
    return 0;
  }

  // It's easiest if these computations are done in canonical space
  this->GenerateFaces();

  // This algorithm is adaptive; if there are enough faces in this
  // polyhedron, a cell locator is built to accelerate intersections.
  // Otherwise brute force looping over cells is used.
  vtkIdType* faceArray = this->Faces->GetPointer(0);
  vtkIdType nfaces = *faceArray++;
  if (nfaces > 25)
  {
    this->ConstructLocator();
  }

  // We need a length to normalize the computations
  double length = sqrt(this->Superclass::GetLength2());

  //  Perform in/out by shooting random rays. Multiple rays are fired
  //  to improve accuracy of the result.
  //
  //  The variable iterNumber counts the number of rays fired and is
  //  limited by the defined variable VTK_MAX_ITER.
  //
  //  The variable deltaVotes keeps track of the number of votes for
  //  "in" versus "out" of the surface.  When deltaVotes > 0, more votes
  //  have counted for "in" than "out".  When deltaVotes < 0, more votes
  //  have counted for "out" than "in".  When the delta_vote exceeds or
  //  equals the defined variable VTK_VOTE_THRESHOLD, then the
  //  appropriate "in" or "out" status is returned.
  //
  double rayMag, ray[3], xray[3], t, pcoords[3], xint[3];
  int i, numInts, iterNumber, deltaVotes, subId;
  vtkIdType idx, numCells;
  double tol = tolerance * length;

  for (deltaVotes = 0, iterNumber = 1;
       (iterNumber < VTK_MAX_ITER) && (abs(deltaVotes) < VTK_VOTE_THRESHOLD); iterNumber++)
  {
    //  Define a random ray to fire.
    do
    {
      for (i = 0; i < 3; i++)
      {
        ray[i] = vtkMath::Random(-1.0, 1.0);
      }
      rayMag = vtkMath::Norm(ray);
    } while (rayMag == 0.0);

    // The ray must be appropriately sized wrt the bounding box. (It has to go
    // all the way through the bounding box.)
    for (i = 0; i < 3; i++)
    {
      xray[i] = x[i] + (length / rayMag) * ray[i];
    }

    // Intersect the line with each of the candidate cells
    numInts = 0;

    if (this->LocatorConstructed)
    {
      // Retrieve the candidate cells from the locator
      this->CellLocator->FindCellsAlongLine(x, xray, tol, this->CellIds);
      numCells = this->CellIds->GetNumberOfIds();

      for (idx = 0; idx < numCells; idx++)
      {
        this->PolyData->GetCell(this->CellIds->GetId(idx), this->Cell);
        if (this->Cell->IntersectWithLine(x, xray, tol, t, xint, pcoords, subId))
        {
          // Check for vertex, edge or face intersections
          // count the number of 0 or 1 pcoords
          int pcount = 0;
          for (int p = 0; p < 3; ++p)
          {
            if (pcoords[p] == 0.0 || pcoords[p] == 1.0)
            {
              pcount++;
            }
          }
          // pcount = 1, exact face intersection
          // pcount = 2, exact edge intersection
          // pcount = 3, exact vertex intersection
          if (pcount == 0)
          {
            numInts++;
          }
        }
      } // for all candidate cells
    }
    else
    {
      numCells = nfaces;
      this->ConstructPolyData();

      for (idx = 0; idx < numCells; idx++)
      {
        this->PolyData->GetCell(idx, this->Cell);
        if (this->Cell->IntersectWithLine(x, xray, tol, t, xint, pcoords, subId))
        {
          // Check for vertex, edge or face intersections
          // count the number of 0 or 1 pcoords
          int pcount = 0;
          for (int p = 0; p < 3; ++p)
          {
            if (pcoords[p] == 0.0 || pcoords[p] == 1.0)
            {
              pcount++;
            }
          }
          // pcount = 1, exact face intersection
          // pcount = 2, exact edge intersection
          // pcount = 3, exact vertex intersection
          if (pcount == 0)
          {
            numInts++;
          }
        }
      } // for all candidate cells
    }

    // Count the result
    if (numInts != 0 && (numInts % 2) == 0)
    {
      --deltaVotes;
    }
    else
    {
      ++deltaVotes;
    }
  } // try another ray

  //   If the number of votes is positive, the point is inside
  //
  return (deltaVotes < 0 ? 0 : 1);
}

#undef VTK_MAX_ITER
#undef VTK_VOTE_THRESHOLD

//----------------------------------------------------------------------------
// Determine whether or not a polyhedron is convex. This method is adapted
// from Devillers et al., "Checking the Convexity of Polytopes and the
// Planarity of Subdivisions", Computational Geometry, Volume 11, Issues 3 - 4,
// December 1998, Pages 187 - 208.
bool vtkPolyhedron::IsConvex()
{
  double x[2][3], n[3], c[3], c0[3], c1[3], c0p[3], c1p[3], n0[3], n1[3];
  double np[3], tmp0, tmp1;
  vtkIdType i, w[2], edgeId, edgeFaces[2], loc, v, *face, r = 0;
  const double eps = FLT_EPSILON;

  std::vector<double> p(this->PointIds->GetNumberOfIds());
  vtkIdVectorType d(this->PointIds->GetNumberOfIds(), 0);

  // initialization
  this->GenerateEdges();
  this->GenerateFaces();
  this->ConstructPolyData();
  this->ComputeBounds();

  // loop over all edges in the polyhedron
  this->EdgeTable->InitTraversal();
  while ((edgeId = this->EdgeTable->GetNextEdge(w[0], w[1])) >= 0)
  {
    // get the edge points
    this->Points->GetPoint(w[0], x[0]);
    this->Points->GetPoint(w[1], x[1]);

    // get the local face ids
    this->EdgeFaces->GetTypedTuple(edgeId, edgeFaces);

    // get the face vertex ids for the first face
    loc = this->FaceLocations->GetValue(edgeFaces[0]);
    face = this->Faces->GetPointer(loc);

    // compute the centroid and normal for the first face
    vtkPolygon::ComputeCentroid(this->Points, face[0], face + 1, c0);
    vtkPolygon::ComputeNormal(this->Points, face[0], face + 1, n0);

    // get the face vertex ids for the second face
    loc = this->FaceLocations->GetValue(edgeFaces[1]);
    face = this->Faces->GetPointer(loc);

    // compute the centroid and normal for the second face
    vtkPolygon::ComputeCentroid(this->Points, face[0], face + 1, c1);
    vtkPolygon::ComputeNormal(this->Points, face[0], face + 1, n1);

    // check for local convexity (the average of the two centroids must be
    // "below" both faces, as defined by their outward normals).
    for (i = 0; i < 3; i++)
    {
      c[i] = (c1[i] + c0[i]) * .5;
      c0p[i] = c[i] - c0[i];
      c1p[i] = c[i] - c1[i];
    }

    if (vtkMath::Dot(n0, c0p) > 0. || vtkMath::Dot(n1, c1p) > 0.)
    {
      return false;
    }

    // check if the edge is a seam edge
    // 1. the edge must not be vertical
    // 2. the two faces must lie on the same side of a vertical plane
    // 3. the upper face must not be vertical

    // 1. simply check that the unit normal along the seam has x or y
    //    components
    for (i = 0; i < 3; i++)
    {
      n[i] = x[1][i] - x[0][i];
    }
    vtkMath::Normalize(n);
    if (std::abs(n[0]) < eps && std::abs(n[1]) < eps)
    {
      continue;
    }

    // 2. we need a plane through the seam and through a vector parallel to the
    //    z axis (or, more accurately, we need a vector perpendicular to this
    //    plane). This vector can be computed using the cross product between
    //    the a vector along the edge, and the vertical axis.
    np[0] = +n[1];
    np[1] = -n[0];
    np[2] = 0;

    for (i = 0; i < 3; i++)
    {
      c[i] = (x[1][i] + x[0][i]) * .5;
      c0p[i] = c0[i] - c[i];
      c1p[i] = c1[i] - c[i];
    }

    // if the vectors from the seam centroid to the face centroid are in the
    // same direction relative to the plane, then condition 2 is satisfied.
    tmp0 = vtkMath::Dot(np, c0p);
    tmp1 = vtkMath::Dot(np, c1p);

    if ((tmp0 < 0.) != (tmp1 < 0.))
    {
      continue;
    }

    // 3. We get the z component of the normal of the highest face
    //    If this is null, the face is in the vertical plane
    tmp0 = c0[2] > c1[2] ? n0[2] : n1[2];
    if (std::abs(tmp0) < eps)
    {
      continue;
    }

    // at this point, we know we have a seam edge. We now look at each vertex
    // in the seam and determine whether or not it is a right-2-seam vertex. A
    // convex polytope has exactly one right-2-seam vertex.
    for (i = 0; i < 2; i++)
    {
      v = w[i];

      // are there already 2 seams associated with this vertex? If so, then the
      // projection of the polytope onto the x-y plane would have multiple seams
      // emanating from the vertex => non-convex.
      if (d[v] == 2)
      {
        return false;
      }

      // is this the first time that this vertex has been associated with a
      // seam? If so, increment its seam count and record the x-coordinate of
      // the adjacent edge vertex.
      if (d[v] == 0)
      {
        d[v]++;
        p[v] = x[(i + 1) % 2][0];
      }
      else
      {
        d[v]++;
        // is v a right-2-seam vertex (i.e. is the x-value of v larger than the
        // x-values of both u and p[v])?
        if (x[i][0] > x[(i + 1) % 2][0] && x[i][0] > p[v])
        {
          // is this the first right-2-seam vertex?
          if (r == 0)
          {
            r++;
          }
          else
          {
            return false;
          }
        }
      }
    }
  }

  return true;
}

//----------------------------------------------------------------------------
int vtkPolyhedron::CellBoundary(int vtkNotUsed(subId), const double pcoords[3], vtkIdList* pts)
{
  double x[3], n[3], o[3], v[3];
  double dist, minDist = VTK_DOUBLE_MAX;
  vtkIdType numFacePts = -1;
  vtkIdType* facePts = nullptr;

  // compute coordinates
  this->ComputePositionFromParametricCoordinate(pcoords, x);

  vtkPolyhedronFaceIterator faceIter(this->GetNumberOfFaces(), this->Faces->GetPointer(1));
  while (faceIter.Id < faceIter.NumberOfPolygons)
  {
    if (faceIter.CurrentPolygonSize < 3)
    {
      vtkErrorMacro("Find a face with "
        << faceIter.CurrentPolygonSize
        << " vertices. Cannot return CellBoundary due to this degenerate case.");
      break;
    }

    vtkPolygon::ComputeNormal(this->Points, faceIter.CurrentPolygonSize, faceIter.Current, n);
    vtkMath::Normalize(n);
    this->Points->GetPoint(faceIter.Current[0], o);
    v[0] = x[0] - o[0];
    v[1] = x[1] - o[1];
    v[2] = x[2] - o[2];
    dist = fabs(vtkMath::Dot(v, n));
    if (dist < minDist)
    {
      minDist = dist;
      numFacePts = faceIter.CurrentPolygonSize;
      facePts = faceIter.Current;
    }

    ++faceIter;
  }

  pts->Reset();
  if (numFacePts > 0)
  {
    for (vtkIdType i = 0; i < numFacePts; i++)
    {
      pts->InsertNextId(this->PointIds->GetId(facePts[i]));
    }
  }

  // determine whether point is inside of polygon
  if (pcoords[0] >= 0.0 && pcoords[0] <= 1.0 && pcoords[1] >= 0.0 && pcoords[1] <= 1.0 &&
    pcoords[2] >= 0.0 && pcoords[2] <= 1.0 &&
    (this->IsInside(x, std::numeric_limits<double>::infinity())))
  {
    return 1;
  }
  else
  {
    return 0;
  }
}

//----------------------------------------------------------------------------
int vtkPolyhedron::EvaluatePosition(const double x[3], double closestPoint[3],
  int& vtkNotUsed(subId), double pcoords[3], double& minDist2, double weights[])
{
  // compute parametric coordinates
  this->ComputeParametricCoordinate(x, pcoords);

  // construct polydata, the result is stored in this->PolyData,
  // the cell array is stored in this->Polys
  this->ConstructPolyData();

  // Construct cell locator
  this->ConstructLocator();

  // find closest point and store the squared distance
  vtkIdType cellId;
  int id;
  double cp[3];
  this->Cell->Initialize();
  this->CellLocator->FindClosestPoint(x, cp, this->Cell, cellId, id, minDist2);

  if (closestPoint)
  {
    closestPoint[0] = cp[0];
    closestPoint[1] = cp[1];
    closestPoint[2] = cp[2];
  }

  // get the MVC weights
  this->InterpolateFunctions(x, weights);

  // set distance to be zero, if point is inside
  int isInside = this->IsInside(x, std::numeric_limits<double>::infinity());
  if (isInside)
  {
    minDist2 = 0.0;
  }

  return isInside;
}

//----------------------------------------------------------------------------
void vtkPolyhedron::EvaluateLocation(
  int& vtkNotUsed(subId), const double pcoords[3], double x[3], double* weights)
{
  this->ComputePositionFromParametricCoordinate(pcoords, x);

  this->InterpolateFunctions(x, weights);
}

//----------------------------------------------------------------------------
void vtkPolyhedron::Derivatives(
  int vtkNotUsed(subId), const double pcoords[3], const double* values, int dim, double* derivs)
{
  int i, j, k, idx;
  for (j = 0; j < dim; j++)
  {
    for (i = 0; i < 3; i++)
    {
      derivs[j * dim + i] = 0.0;
    }
  }

  static const double Sample_Offset_In_Parameter_Space = 0.01;

  double x[4][3];
  double coord[3];

  // compute positions of point and three offset sample points
  coord[0] = pcoords[0];
  coord[1] = pcoords[1];
  coord[2] = pcoords[2];
  this->ComputePositionFromParametricCoordinate(coord, x[0]);

  coord[0] += Sample_Offset_In_Parameter_Space;
  this->ComputePositionFromParametricCoordinate(coord, x[1]);
  coord[0] = pcoords[0];

  coord[1] += Sample_Offset_In_Parameter_Space;
  this->ComputePositionFromParametricCoordinate(coord, x[2]);
  coord[1] = pcoords[1];

  coord[2] += Sample_Offset_In_Parameter_Space;
  this->ComputePositionFromParametricCoordinate(coord, x[3]);
  coord[2] = pcoords[2];

  this->ConstructPolyData();
  int numVerts = this->PolyData->GetNumberOfPoints();

  double* weights = new double[numVerts];
  double* sample = new double[dim * 4];
  // for each sample point, sample data values
  for (idx = 0, k = 0; k < 4; k++) // loop over three sample points
  {
    this->InterpolateFunctions(x[k], weights);
    for (j = 0; j < dim; j++, idx++) // over number of derivates requested
    {
      sample[idx] = 0.0;
      for (i = 0; i < numVerts; i++)
      {
        sample[idx] += weights[i] * values[j + i * dim];
      }
    }
  }

  double v1[3], v2[3], v3[3];
  double l1, l2, l3;
  // compute differences along the two axes
  for (i = 0; i < 3; i++)
  {
    v1[i] = x[1][i] - x[0][i];
    v2[i] = x[2][i] - x[0][i];
    v3[i] = x[3][i] - x[0][i];
  }
  l1 = vtkMath::Normalize(v1);
  l2 = vtkMath::Normalize(v2);
  l3 = vtkMath::Normalize(v3);

  // compute derivatives along x-y-z axes
  double ddx, ddy, ddz;
  for (j = 0; j < dim; j++)
  {
    ddx = (sample[dim + j] - sample[j]) / l1;
    ddy = (sample[2 * dim + j] - sample[j]) / l2;
    ddz = (sample[3 * dim + j] - sample[j]) / l3;

    // project onto global x-y-z axes
    derivs[3 * j] = ddx * v1[0] + ddy * v2[0] + ddz * v3[0];
    derivs[3 * j + 1] = ddx * v1[1] + ddy * v2[1] + ddz * v3[1];
    derivs[3 * j + 2] = ddx * v1[2] + ddy * v2[2] + ddz * v3[2];
  }

  delete[] weights;
  delete[] sample;
}

//----------------------------------------------------------------------------
double* vtkPolyhedron::GetParametricCoords()
{
  return nullptr;
}

//----------------------------------------------------------------------------
void vtkPolyhedron::InterpolateFunctions(const double x[3], double* sf)
{
  // construct polydata, the result is stored in this->PolyData,
  // the cell array is stored in this->Polys
  this->ConstructPolyData();

  // compute the weights
  if (!this->PolyData->GetPoints())
  {
    return;
  }
  vtkMeanValueCoordinatesInterpolator::ComputeInterpolationWeights(
    x, this->PolyData->GetPoints(), this->Polys, sf);
}

//----------------------------------------------------------------------------
void vtkPolyhedron::InterpolateDerivs(const double x[3], double* derivs)
{
  (void)x;
  (void)derivs;
}

//----------------------------------------------------------------------------
int vtkPolyhedron::Triangulate(int vtkNotUsed(index), vtkIdList* ptIds, vtkPoints* pts)
{
  ptIds->Reset();
  pts->Reset();

  if (!this->GetPoints() || !this->GetNumberOfPoints())
  {
    return 0;
  }

  this->ComputeBounds();

  // use ordered triangulator to triangulate the polyhedron.
  vtkSmartPointer<vtkOrderedTriangulator> triangulator =
    vtkSmartPointer<vtkOrderedTriangulator>::New();

  triangulator->InitTriangulation(this->Bounds, this->GetNumberOfPoints());
  triangulator->PreSortedOff();

  double point[3];
  for (vtkIdType i = 0; i < this->GetNumberOfPoints(); i++)
  {
    this->GetPoints()->GetPoint(i, point);
    triangulator->InsertPoint(i, point, point, 0);
  }
  triangulator->Triangulate();

  triangulator->AddTetras(0, ptIds, pts);

  // convert to global Ids
  vtkIdType* ids = ptIds->GetPointer(0);
  for (vtkIdType i = 0; i < ptIds->GetNumberOfIds(); i++)
  {
    ids[i] = this->PointIds->GetId(ids[i]);
  }

  return 1;
}

bool IntersectWithContour(vtkCell* cell, vtkDataArray* pointScalars, vtkPointIdMap* pointIdMap,
  double value, function<bool(double, double)>& compare, bool& allTrue)
{
  allTrue = true;
  bool allFalse = true;

  int nPoints = cell->GetNumberOfPoints();
  for (int i = 0; i < nPoints; ++i)
  {
    vtkIdType globalPid = cell->GetPointId(i);
    vtkIdType localPid = pointIdMap->find(globalPid)->second;

    double pointValue = pointScalars->GetTuple1(localPid);

    if (compare(pointValue, value))
    {
      allFalse = false;
    }
    else
    {
      allTrue = false;
    }
  }

  return !(allTrue || allFalse);
}

// start new contouring code //

/*

This code contains a new way of polyhedral contouring. The approach is as follows:
each of the polyhedron faces is triangulated (independent on normal orientation).

After triangulation, the contouring will give exactly 0 or 1 lines across the
(tri-)faces. This allows for a straightforward face-edge-contourpoint walking to
create one or more closed contour polygons.

The face-edge walking starts a given contour point. Using a lookup structure,
the edge of the contour point is used to find an unvisited face in the list of
the two faces that border the edge. The edges of that face are then searched
to find the other edge with a contour point. These two contour points then define
one contour line. The walking procedure stops when the starting contour point
is reached again. The collection of lines forms a closed polyhedron.

*/

bool CheckWatertightNonManifoldPolyhedron(vtkPolyhedron* cell, EdgeSet& originalEdges)
{
  EdgeFaceSetMap directMap;
  int nFaces = cell->GetNumberOfFaces();
  for (int i = 0; i < nFaces; ++i)
  {
    vtkCell* face = cell->GetFace(i);
    for (int j = 0; j < face->GetNumberOfEdges(); ++j)
    {
      Edge e(face->GetEdge(j));
      originalEdges.insert(e);

      auto at = directMap.find(e);
      if (at == directMap.end())
      {
        set<vtkIdType> facesOfEdge;
        facesOfEdge.insert(i);
        directMap.insert(make_pair(e, facesOfEdge));
      }
      else
      {
        set<vtkIdType>& facesOfEdge = at->second;
        facesOfEdge.insert(i);
      }
    }
  }

  size_t nEdges = cell->GetNumberOfEdges();
  size_t sizeMap = directMap.size();
  if (sizeMap != nEdges)
  {
    vtkGenericWarningMacro(
      << "The number of edges in the edge>face map does not match the number of edges of the cell");
    return false;
  }

  bool ok = true;

  for (const auto& entry : directMap)
  {
    const set<vtkIdType>& facesOfEdge = entry.second;
    if (facesOfEdge.size() != 2)
    {
      vtkGenericWarningMacro(
        << "The polyhedron is not watertight or non-manifold because the number of faces of edge "
        << entry.first.first << "-" << entry.first.second << " is not 2 but "
        << facesOfEdge.size());
      ok = false;
    }
  }

  return ok;
}

/*

When directly triangulating the polyhedron faces that are not simple triangles or quads (i.e.
they're polygons), a problem can occur which gives the resulting triangulated polyhedron
non-manifold triangle faces

For example:

0 ----- 1 ----- 2
|       |       |
|       |       |
|       6       |
|       |       |
|       |       |
3 ----- 4 ----- 5

this can be triangulated as (0,1,6), (0,6,3), (3,6,4) and (1,2,6), (6,2,5), (6,5,4) (that would be
OK) OR triangulated as          (0,1,4), (0,4,3), (1,6,4) and (1,2,5), (1,5,4), (1,6,4) (that would
be NOT OK because of the duplicate (1,6,4) triangle)

In fact, the ear-clipping polygon triangulation can produce, depending on the geometry,
the *unwanted* triangulation instead of the desired one because it prioritizes triangles with
inner angles close to 60 degrees, even though it then ends with a triangle with a very large
internal angle (up to 180 degrees).

Therefore the preferred approach is to triangulate a polygon using a fan triangulation that gives
the smallest range of internal angles. This approach will always choose to triangulate starting at
(6) in the example given above. If (6) is moved out-of-plane as it were (see TestPolyhedron5.cxx)
then the tetrahedralization gives a face triangulation that includes the edge (1)-(4), but
triangulates the face as (1-4-2)-(2-4-5). The now preferred method triangulates it as
(6-2-1)-(6-2-5)-(6-5-4), thereby preserving the original shape of the polygon, even if it is
slightly concave. Note that extremely concave polygons will give completely incorrect triangulations
with this method, but that would also be problematic for the tetrahedralization approach.

*/
// by using an *ordered* set, the triangles are consistently ordered, independent of face normal

int FindLowestIndex(vtkIdType n, vtkIdType* arr)
{
  int lowest(-1);
  vtkIdType min(VTK_ID_MAX);
  for (int i = 0; i < n; ++i)
  {
    if (arr[i] < min)
    {
      lowest = i;
      min = arr[i];
    }
  }
  return lowest;
}

void FindLowestNeighbor(vtkIdType n, vtkIdType* arr, int idx, bool& mustReverse)
{
  idx += n; // add n to prevent negative remainders
  vtkIdType left = arr[(idx - 1) % n];
  vtkIdType right = arr[(idx + 1) % n];
  if (left < right)
  {
    mustReverse = true;
  }
  else if (left > right)
  {
    mustReverse = false;
  }
}

// independent of direction of the quad, return the same triangle(s). If a quad is organized
// [0,1,2,3] or [1,2,3,0] or whatever it should return the same two triangles so that two adjacent
// cells that have opposite normals on a quad will have the same consistent face triangulation and
// therefore the same polygonized border.
void TriangulateQuad(vtkCell* quad, FaceVector& faces)
{
  vector<vtkIdType> consistentTri1(3), consistentTri2(2);
  int l = FindLowestIndex(4, quad->GetPointIds()->GetPointer(0));
  bool mustReverse(false);
  FindLowestNeighbor(4, quad->GetPointIds()->GetPointer(0), l, mustReverse);

  if (mustReverse)
  {
    int m = l + 4; // add four to prevent negative remainders: ' (0-1)%4 => -1 '
    consistentTri1[0] = quad->GetPointIds()->GetId(l);
    consistentTri1[1] = quad->GetPointIds()->GetId((m - 1) % 4);
    consistentTri1[2] = quad->GetPointIds()->GetId((m - 2) % 4);

    consistentTri2[0] = quad->GetPointIds()->GetId(l);
    consistentTri2[1] = quad->GetPointIds()->GetId((m - 2) % 4);
    consistentTri2[2] = quad->GetPointIds()->GetId((m - 3) % 4);
  }
  else
  {
    consistentTri1[0] = quad->GetPointIds()->GetId(l);
    consistentTri1[1] = quad->GetPointIds()->GetId((l + 1) % 4);
    consistentTri1[2] = quad->GetPointIds()->GetId((l + 2) % 4);

    consistentTri2[0] = quad->GetPointIds()->GetId(l);
    consistentTri2[1] = quad->GetPointIds()->GetId((l + 2) % 4);
    consistentTri2[2] = quad->GetPointIds()->GetId((l + 3) % 4);
  }

  faces.push_back(consistentTri1);
  faces.push_back(consistentTri2);
}

int TriangulatePolygonAt(vtkCell* polygon, int offset, vtkIdList* triIds)
{
  triIds->Reset();
  int nPoints = polygon->GetNumberOfPoints();

  for (int i = 0; i < nPoints - 2; ++i)
  {
    int idx0 = offset;
    int idx1 = (i + offset + 1) % nPoints;
    int idx2 = (i + offset + 2) % nPoints;
    triIds->InsertNextId(polygon->GetPointId(idx0));
    triIds->InsertNextId(polygon->GetPointId(idx1));
    triIds->InsertNextId(polygon->GetPointId(idx2));
  }
  return nPoints - 2;
}

void CalculateAngles(const vtkIdType* tri, vtkPoints* phPoints, const vtkPointIdMap* pointIdMap,
  double& minAngle, double& maxAngle)
{
  vtkIdType idx0 = tri[0];
  vtkIdType idx1 = tri[1];
  vtkIdType idx2 = tri[2];

  idx0 = pointIdMap->find(idx0)->second;
  idx1 = pointIdMap->find(idx1)->second;
  idx2 = pointIdMap->find(idx2)->second;

  double p[9];
  phPoints->GetPoint(idx0, p + 0);
  phPoints->GetPoint(idx1, p + 3);
  phPoints->GetPoint(idx2, p + 6);

  minAngle = DBL_MAX;
  maxAngle = 0;

  vtkVector3d left, right;
  for (int i = 0; i < 3; ++i)
  {
    int a = 3 * i;
    int b = 3 * ((i + 1) % 3);
    int c = 3 * ((i + 2) % 3);

    double* p0 = p + a;
    double* p1 = p + b;
    double* p2 = p + c;

    left.Set(p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]);
    right.Set(p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]);
    left.Normalize();
    right.Normalize();

    double dot = left.Dot(right);
    // rounding errors can occur in the vtkVector3d::Dot function,
    // clamp to [-1, 1] (i.e. the input range for the acos function)
    dot = min(1.0, dot);
    dot = max(-1.0, dot);

    double angle = acos(dot) * 180.0 / vtkMath::Pi();

    minAngle = min(angle, minAngle);
    maxAngle = max(angle, maxAngle);
  }
}

void TriangulatePolygon(vtkCell* polygon, FaceVector& faces, vtkIdList* triIds, vtkPoints* phPoints,
  vtkPointIdMap* pointIdMap)
{
  // attempt a fan triangulation for each point on the polygon and choose the
  // fan triangulation with the lowest range in internal angles differing from 60 degrees

  int nPoints = polygon->GetNumberOfPoints();
  vector<double> minAngles(nPoints, DBL_MAX), maxAngles(nPoints, 0);

  for (int i = 0; i < nPoints; ++i)
  {
    int nTris = TriangulatePolygonAt(polygon, i, triIds);
    for (int j = 0; j < nTris; ++j)
    {
      double minAngle, maxAngle;
      CalculateAngles(triIds->GetPointer(3 * j), phPoints, pointIdMap, minAngle, maxAngle);
      minAngles[i] = min(minAngles[i], minAngle);
      maxAngles[i] = max(maxAngles[i], maxAngle);
    }
  }

  double minRange(DBL_MAX);
  int choose(-1);
  for (int i = 0; i < nPoints; ++i)
  {
    double minDiff = abs(60.0 - minAngles[i]);
    double maxDiff = abs(maxAngles[i] - 60.0);
    double range = minDiff + maxDiff;
    if (range < minRange)
    {
      choose = i;
      minRange = range;
    }
  }

  int nTris = TriangulatePolygonAt(polygon, choose, triIds);
  for (int i = 0; i < nTris; ++i)
  {
    Face tri;
    tri.push_back(triIds->GetId(3 * i + 0));
    tri.push_back(triIds->GetId(3 * i + 1));
    tri.push_back(triIds->GetId(3 * i + 2));
    faces.push_back(tri);
  }
}

void TriangulateFace(vtkCell* face, FaceVector& faces, vtkIdList* triIds, vtkPoints* phPoints,
  vtkPointIdMap* pointIdMap)
{
  switch (face->GetCellType())
  {
    case VTK_TRIANGLE:
    {
      Face tri;
      for (int i = 0; i < 3; ++i)
      {
        tri.push_back(face->GetPointIds()->GetId(i));
      }
      faces.push_back(tri);
      break;
    }
    case VTK_QUAD:
    {
      TriangulateQuad(face, faces);
      break;
    }
    case VTK_POLYGON:
    {
      TriangulatePolygon(face, faces, triIds, phPoints, pointIdMap);
      break;
    }
    default:
    {
      vtkGenericWarningMacro(<< "Unable to triangulate face cell type " << face->GetCellType());
    }
  }
}

bool CheckNonManifoldTriangulation(EdgeFaceSetMap& edgeFaceMap)
{
  for (const auto& entry : edgeFaceMap)
  {
    if (entry.second.size() != 2)
    {
      return false;
    }
  }
  return true;
}

bool GetContourPoints(double value, vtkPolyhedron* cell,
  vtkPointIdMap* pointIdMap, // from global id to local cell id
  FaceEdgesVector& faceEdgesVector, EdgeFaceSetMap& edgeFaceMap, EdgeSet& originalEdges,
  vector<vector<vtkIdType> >& oririginalFaceTriFaceMap,
  PointIndexEdgeMultiMap& contourPointEdgeMultiMap, EdgePointIndexMap& edgeContourPointMap,
  vtkIncrementalPointLocator* locator, vtkDataArray* pointScalars, vtkPointData* inPd,
  vtkPointData* outPd)
{

  vtkIdType nFaces = cell->GetNumberOfFaces();

  // this will contain the (possibly triangulated) faces
  // that will be contoured.
  FaceVector faces;

  if (!CheckWatertightNonManifoldPolyhedron(cell, originalEdges))
  {
    return false;
  }

  // temporaries for triangulation
  vtkNew<vtkIdList> triIds;

  for (vtkIdType i = 0; i < nFaces; ++i)
  {
    vtkCell* face = cell->GetFace(i);
    if (!face)
    {
      return false;
    }

    size_t nTris = faces.size();
    TriangulateFace(face, faces, triIds, cell->GetPoints(), pointIdMap);
    vector<vtkIdType> trisOfFace;
    for (size_t j = nTris; j < faces.size(); ++j)
    {
      trisOfFace.push_back((vtkIdType)j);
    }
    oririginalFaceTriFaceMap.push_back(trisOfFace);
  }

  // because of the triangulation performed above,
  // the faces vector now contains only faces that give exactly 0 or 1 contour lines.
  // this enables the walking of edge-face-contourpoint tuples to give closed contour polygon(s)

  // make the edge-face map and the face edges list
  nFaces = (vtkIdType)faces.size();
  for (int i = 0; i < nFaces; ++i)
  {
    Face& face = faces[i];
    size_t nFacePoints = face.size();

    EdgeVector edges;
    for (size_t j = 0; j < nFacePoints; ++j)
    {
      // each edge is in global id space.
      Edge e(face[j], face[(j + 1) % nFacePoints]);
      edges.push_back(e);

      auto at = edgeFaceMap.find(e);
      if (at == edgeFaceMap.end())
      {
        set<vtkIdType> facesOfEdge;
        facesOfEdge.insert(i); // this edge is connected to face i
        edgeFaceMap.insert(make_pair(e, facesOfEdge));
      }
      else
      {
        set<vtkIdType>& facesOfEdge = at->second;
        facesOfEdge.insert(i);
      }
    }

    faceEdgesVector.push_back(edges);
  }

  if (!CheckNonManifoldTriangulation(edgeFaceMap))
  {
    vtkGenericWarningMacro(<< "A cell with a non-manifold triangulation has been encountered. This "
                              "cell cannot be contoured.");
    return false;
  }

  vtkPoints* cellPoints = cell->GetPoints();

  const double eps = 1e-6;

  double p0[3], p1[3], cp[3]; // left, right and contour point

  for (const auto& entry : edgeFaceMap)
  {
    const Edge& edge = entry.first;

    // here we need to convert the global ids of the edge to
    // local ids to find the points and the point scalars.
    auto at0 = pointIdMap->find(edge.first);
    auto at1 = pointIdMap->find(edge.second);
    if (at0 == pointIdMap->end() || at1 == pointIdMap->end())
    {
      vtkGenericWarningMacro(<< "Could not find global id " << edge.first << " or " << edge.second);
      continue;
    }

    vtkIdType id0 = at0->second;
    vtkIdType id1 = at1->second;

    double v0 = pointScalars->GetTuple1(id0);
    double v1 = pointScalars->GetTuple1(id1);

    // TODO: check if a face falls completely in the value being contoured.
    //       then add face DIRECTLY.

    // TODO: what when an edge is completely on a contour value?

    // TODO: what when an existing point is on a contour value?
    //       in that case the edge-face-edge walking is no longer consistent:
    //       from the point you can walk to each of the faces that border the point,
    //       which often is larger than two.

    // FOR ALL ISSUES ABOVE, FOR NOW:
    //          clamp the fraction to be in <eps, 1-eps> to
    //          resolve any difficulties that arise from a contour lying within
    //          machine tolerance on an existing mesh point, edge or face.

    if ((v0 <= value && v1 > value) || (v1 <= value && v0 > value))
    {
      cellPoints->GetPoint(id0, p0);
      cellPoints->GetPoint(id1, p1);

      // note that the predicate for the if-statement we're in prohibits v1 == v0 == value
      // that means that an edge that is exactly on the contour will never be in the contour.
      // instead, two points that lie just off two other edges branching off that edge will
      // form the contour instead. That also prevents division by zero because v1 != v0 always
      double f = (value - v0) / (v1 - v0);

      f = max(0.0 + eps, f);
      f = min(1.0 - eps, f);

      for (int i = 0; i < 3; ++i)
      {
        cp[i] = (1.0 - f) * p0[i] + f * p1[i];
      }

      vtkIdType ptId(-1);
      locator->InsertUniquePoint(cp, ptId);

      // after point addition, also add the interpolated point value
      outPd->InterpolateEdge(inPd, ptId, edge.first, edge.second, f);

      // store result in the point->edge lookup structure
      contourPointEdgeMultiMap.insert(make_pair(ptId, edge));
    }
  }

  // build the reverse lookup structure edge->point
  for (const auto& entry : contourPointEdgeMultiMap)
  {
    auto range = contourPointEdgeMultiMap.equal_range(entry.first);
    for (auto jt = range.first; jt != range.second; ++jt)
    {
      edgeContourPointMap.insert(make_pair(jt->second, entry.first));
    }
  }

  return true;
}

int CreateContours(EdgeFaceSetMap& edgeFaceMap, FaceEdgesVector& faceEdgesVector,
  EdgePointIndexMap& edgeContourPointMap, EdgeSet& originalEdges,
  function<void(vtkIdList*)> contourCallback)
{
  EdgeSet availableContourEdges;
  for (const auto& entry : edgeContourPointMap)
  {
    availableContourEdges.insert(entry.first);
  }

  vtkNew<vtkIdList> poly;
  EdgeSet visited;
  while (!availableContourEdges.empty())
  {
    Edge start = *availableContourEdges.begin();
    Edge at(start);
    vtkIdType lastFace(-1);

    do
    {
      vtkIdType cp = edgeContourPointMap.find(at)->second;
      if (originalEdges.find(at) != originalEdges.end())
      {
        poly->InsertNextId(cp);
      }

      visited.insert(at);

      const set<vtkIdType>& facesOfEdge = edgeFaceMap[at];

      vtkIdType face(lastFace);
      for (const vtkIdType& faceOfEdge : facesOfEdge)
      {
        if (lastFace != faceOfEdge)
        {
          face = faceOfEdge;
          break;
        }
      }

      if (face == lastFace)
      {
        vtkGenericWarningMacro(<< "Face navigation failed in polyhedral contouring");
        return EXIT_FAILURE;
      }

      lastFace = face;

      const EdgeVector& edgesOfFace = faceEdgesVector[face];

      for (const auto& otherEdge : edgesOfFace)
      {
        if (equal_fn()(otherEdge, at))
        {
          continue;
        }

        auto found = edgeContourPointMap.find(otherEdge);
        if (found != edgeContourPointMap.end())
        {
          at = otherEdge;
          break;
        }
      }
    } while (!equal_fn()(at, start));

    if (poly->GetNumberOfIds() > 2)
    {
      // do something with the poly
      // contour: add directly to result;
      //    clip: use poly to carve off unwanted part(s)
      contourCallback(poly);
    }

    for (const Edge& it : visited)
    {
      availableContourEdges.erase(it);
    }
    poly->Reset();
    visited.clear();
  }

  return EXIT_SUCCESS;
}

void vtkPolyhedron::Contour(double value, vtkDataArray* pointScalars,
  vtkIncrementalPointLocator* locator, vtkCellArray* verts, vtkCellArray* lines,
  vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId,
  vtkCellData* outCd)
{
  EdgeFaceSetMap edgeFaceMap;
  FaceEdgesVector faceEdgesVector;
  PointIndexEdgeMultiMap contourPointEdgeMultiMap;
  EdgePointIndexMap edgeContourPointMap;
  EdgeSet originalEdges;
  vector<vector<vtkIdType> > oririginalFaceTriFaceMap;

  if (!GetContourPoints(value, this, this->PointIdMap, faceEdgesVector, edgeFaceMap, originalEdges,
        oririginalFaceTriFaceMap, contourPointEdgeMultiMap, edgeContourPointMap, locator,
        pointScalars, inPd, outPd))
  {
    return;
  }

  vtkIdType offset(0);
  if (verts)
  {
    offset += verts->GetNumberOfCells();
  }
  if (lines)
  {
    offset += lines->GetNumberOfCells();
  }

  if (contourPointEdgeMultiMap.empty())
  {
    return; // no contours made
  }

  // the callback lambda will add each polygon found polys cell array
  function<void(vtkIdList*)> cb = [=](vtkIdList* poly) {
    if (!poly)
      return;

    vtkIdType newCellId =
      offset + polys->InsertNextCell(poly->GetNumberOfIds(), poly->GetPointer(0));
    outCd->CopyData(inCd, cellId, newCellId);
  };

  CreateContours(edgeFaceMap, faceEdgesVector, edgeContourPointMap, originalEdges, cb);
}

// start new clipping code
// first some support functions, see below for the Clip(...) function

void PolygonAsEdges(vector<vtkIdType>& polygon, vector<Edge>& edges,
  unordered_map<Edge, int, hash_fn, equal_fn>& edgeCount)
{
  for (size_t i = 0; i < polygon.size(); ++i)
  {
    Edge e(polygon[i], polygon[(i + 1) % polygon.size()]);
    edges.push_back(e);

    auto at = edgeCount.find(e);
    if (at == edgeCount.end())
    {
      edgeCount.insert(make_pair(e, 1));
    }
    else
    {
      int& counter = at->second;
      counter++;
    }
  }
}

bool FindNext(
  vector<Edge>& unordered, const Edge& last, vector<Edge>::iterator& next, Edge& nextEdge)
{
  for (auto it = unordered.begin(); it != unordered.end(); ++it)
  {
    if (last.second == it->first)
    {
      next = it;
      nextEdge = *it;
      return true;
    }
    else if (last.second == it->second)
    {
      nextEdge = Edge(it->second, it->first);
      next = it;
      return true;
    }
  }

  return false;
}

bool OrderEdgePolygon(vector<Edge>& unordered, vector<vector<Edge> >& ordered)
{
  if (unordered.empty())
  {
    return true;
  }

  vector<Edge> edgePolygon;

  // ! we are NOT taking a reference here on purpose because when
  // ! the vector 'unordered' has its first element removed, a reference would
  // ! point to the *NEW* first element of the vector, or be invalid if the
  // ! vector backing store is completely re-allocated.
  // ! So, don't do this: Edge& last = *unordered.begin();

  Edge last = *unordered.begin();
  edgePolygon.push_back(last);
  unordered.erase(unordered.begin());

  while (!unordered.empty())
  {
    vector<Edge>::iterator next;
    Edge nextEdge;
    if (!FindNext(unordered, last, next, nextEdge))
    {
      if (!unordered.empty())
      {
        last = *unordered.begin();
      }
      else
      {
        break;
      }

      ordered.push_back(edgePolygon);
      edgePolygon.clear();
      continue;
    }

    edgePolygon.push_back(nextEdge);
    last = nextEdge;
    unordered.erase(next);
  }
  ordered.push_back(edgePolygon);
  return true;
}

void EdgesToPolygon(vector<Edge>& edges, vector<vtkIdType>& polygon)
{
  for (auto it = edges.begin(); it != edges.end(); ++it)
  {
    polygon.push_back(it->first);
  }
}

void EdgesToPolygons(vector<vector<Edge> >& edgePolygons, vector<vector<vtkIdType> >& polygons)
{
  for (auto it = edgePolygons.begin(); it != edgePolygons.end(); ++it)
  {
    vector<Edge>& edgePolygon = *it;
    vector<vtkIdType> polygon;
    EdgesToPolygon(edgePolygon, polygon);
    polygons.push_back(polygon);
  }
}

void PruneContourPoints(vector<vector<vtkIdType> >& merged, EdgeSet& originalEdges,
  PointIndexEdgeMultiMap& contourPointEdgeMultiMap)
{
  for (auto it = merged.begin(); it != merged.end(); ++it)
  {
    vector<vtkIdType>& polygon = *it;
    // don't use size_t because the index i will get to -1 in the loop below
    // and size_t is *UNSIGNED*
    int i = (int)polygon.size() - 1;
    for (; i >= 0; --i)
    {
      auto at = contourPointEdgeMultiMap.find(polygon[i]);
      if (at != contourPointEdgeMultiMap.end())
      {
        bool doErase(true);
        auto eq = contourPointEdgeMultiMap.equal_range(polygon[i]);
        for (auto jt = eq.first; jt != eq.second; ++jt)
        {
          const Edge& edgeOfContourPoint = jt->second;
          if (originalEdges.find(edgeOfContourPoint) != originalEdges.end())
          {
            doErase = false;
            break;
          }
        }

        if (doErase)
        {
          // the contour point is on a non-original edge: remove it from the polygon.
          polygon.erase(polygon.begin() + i);
        }
      }
    }
  }
}

void MergeTriFacePolygons(vector<vector<vtkIdType> >& toMerge, vector<vector<vtkIdType> >& merged,
  EdgeSet& originalEdges, PointIndexEdgeMultiMap& contourPointEdgeMultiMap)
{
  // this is a five-step procedure:

  // 1) convert from vector<vtkIdType> to vector<Edge>
  // 2) remove duplicate edges;
  // 3) order the remaining edges head-to-tail;
  // 4) convert back from vector<Edge> to vector<vtkIdType>
  // 5) prune contour points that are not on original edges.

  // step 1: convert from vector<vtkIdType> to vector<Edge>
  vector<vector<Edge> > polygonsAsEdges;
  unordered_map<Edge, int, hash_fn, equal_fn> edgeCount;
  for (auto it = toMerge.begin(); it != toMerge.end(); ++it)
  {
    vector<Edge> edgesPolygon;
    PolygonAsEdges(*it, edgesPolygon, edgeCount);
    polygonsAsEdges.push_back(edgesPolygon);
  }

  // step 2: remove duplicate edges.
  for (auto it = polygonsAsEdges.begin(); it != polygonsAsEdges.end(); ++it)
  {
    vector<Edge>& edgesPolygon = *it;
    // don't use size_t because the index i will get to -1 in the loop below
    // and size_t is *UNSIGNED* => overflow
    int i = (int)edgesPolygon.size() - 1;
    for (; i >= 0; --i)
    {
      int ec = edgeCount.find(edgesPolygon[i])->second;
      if (ec == 2)
      {
        edgesPolygon.erase(edgesPolygon.begin() + i);
      }
    }
  }

  // step 3: throw remaining edges together
  vector<Edge> withoutDuplicates;
  for (auto it = polygonsAsEdges.begin(); it != polygonsAsEdges.end(); ++it)
  {
    vector<Edge>& edgesPolygon = *it;
    for (auto jt = edgesPolygon.begin(); jt != edgesPolygon.end(); ++jt)
    {
      withoutDuplicates.push_back(*jt);
    }
  }

  // step 3: and merge them
  vector<vector<Edge> > result;
  OrderEdgePolygon(withoutDuplicates, result);

  // step 4: convert back to vector<vtkIdType> polygons
  EdgesToPolygons(result, merged);

  // step 5: prune contour points that are not on original edges.
  PruneContourPoints(merged, originalEdges, contourPointEdgeMultiMap);
}

void MergeTriFacePolygons(vtkPolyhedron* cell,
  unordered_map<vtkIdType, vector<vtkIdType> >& triFacePolygonMap,
  vector<vector<vtkIdType> >& oririginalFaceTriFaceMap,
  PointIndexEdgeMultiMap& contourPointEdgeMultiMap, EdgeSet& originalEdges,
  vector<vector<vtkIdType> >& polygons)
{
  // for each *original* face, find the list of triangulated faces
  // and use these to get the list of polygons on the original face
  int nFaces = cell->GetNumberOfFaces();
  for (int i = 0; i < nFaces; ++i)
  {
    const vector<vtkIdType>& triFacesOfOriginalFace = oririginalFaceTriFaceMap[i];

    vector<vector<vtkIdType> > facePolygons;
    for (auto it = triFacesOfOriginalFace.begin(); it != triFacesOfOriginalFace.end(); ++it)
    {
      vtkIdType triFace = *it;
      auto at = triFacePolygonMap.find(triFace);
      if (at != triFacePolygonMap.end())
        facePolygons.push_back(at->second);
    }

    if (!facePolygons.empty())
    {
      vector<vector<vtkIdType> > mergedPolygons;
      MergeTriFacePolygons(facePolygons, mergedPolygons, originalEdges, contourPointEdgeMultiMap);
      for (auto it = mergedPolygons.begin(); it != mergedPolygons.end(); ++it)
      {
        polygons.push_back(*it);
      }
    }
  }
}

void vtkPolyhedron::Clip(double value, vtkDataArray* pointScalars,
  vtkIncrementalPointLocator* locator, vtkCellArray* connectivity, vtkPointData* inPd,
  vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut)
{
  // set the compare function
  function<bool(double, double)> c = [insideOut](double a, double b) {
    if (insideOut)
      return less_equal<double>()(a, b);

    return greater_equal<double>()(a, b);
  };

  bool all(true);

  // check if polyhedron is all in
  bool intersect = IntersectWithContour(this, pointScalars, this->PointIdMap, value, c, all);
  if (!intersect && all)
  {
    double x[3];

    vtkNew<vtkIdList> faceStream;
    int nFaces = this->GetNumberOfFaces();
    faceStream->InsertNextId(nFaces);
    for (int i = 0; i < nFaces; ++i)
    {
      vtkCell* face = this->GetFace(i);
      int nFacePoints = (int)face->GetNumberOfPoints();
      faceStream->InsertNextId(nFacePoints);
      for (int j = 0; j < nFacePoints; ++j)
      {
        face->GetPoints()->GetPoint(j, x);

        vtkIdType id(-1);
        locator->InsertUniquePoint(x, id);
        faceStream->InsertNextId(id);
        outPd->CopyData(inPd, face->GetPointId(j), id);
      }
    }
    if (nFaces > 0)
    {
      vtkIdType newCellId = connectivity->InsertNextCell(faceStream);
      outCd->CopyData(inCd, cellId, newCellId);
    }
    return;
  }

  EdgeFaceSetMap edgeFaceMap;
  FaceEdgesVector faceEdgesVector;
  PointIndexEdgeMultiMap contourPointEdgeMultiMap;
  EdgePointIndexMap edgeContourPointMap;
  EdgeSet originalEdges;
  vector<vector<vtkIdType> > oririginalFaceTriFaceMap;

  if (!GetContourPoints(value, this, this->PointIdMap, faceEdgesVector, edgeFaceMap, originalEdges,
        oririginalFaceTriFaceMap, contourPointEdgeMultiMap, edgeContourPointMap, locator,
        pointScalars, inPd, outPd))
  {
    return;
  }

  if (contourPointEdgeMultiMap.empty())
  {
    return;
  }

  unordered_map<vtkIdType, vector<vtkIdType> > triFacePolygonMap;

  vtkPoints* cellPoints = this->GetPoints();

  // for all (triangulated) faces, walk the edges and insert (+) points and contour points
  // note: the edges are oriented head-to-tail and neighbor-to-neighbor, i.e. [0-1][1-2][2-0]
  for (size_t i = 0; i < faceEdgesVector.size(); ++i)
  {
    const EdgeVector& edges = faceEdgesVector[i];

    vector<vtkIdType> polygon;
    for (auto edgeIt = edges.begin(); edgeIt != edges.end(); ++edgeIt)
    {
      const Edge& edge = *edgeIt;
      vtkIdType v0 = edge.first;
      auto localIdIt = this->PointIdMap->find(v0);
      if (localIdIt == this->PointIdMap->end())
      {
        vtkGenericWarningMacro(<< "Could not find global id " << v0);
        continue;
      }
      vtkIdType localId = localIdIt->second;

      double val0 = pointScalars->GetTuple1(localId);
      if (c(val0, value))
      {
        vtkIdType id(-1);
        locator->InsertUniquePoint(cellPoints->GetPoint(localId), id);
        // we have added a point, so add point data to the output too
        // that has to be done in global id space
        outPd->CopyData(inPd, v0, id);
        polygon.push_back(id);
      }

      // if the current edge contains a contour point, add that as well
      // note: due to the edge ordering this works.
      auto at = edgeContourPointMap.find(edge);
      if (at != edgeContourPointMap.end())
      {
        polygon.push_back(at->second);
      }
    }

    // if a polygon was identified (if all face points are all + or all -, there is no polygon)
    if (!polygon.empty())
    {
      triFacePolygonMap.insert(make_pair(static_cast<vtkIdType>(i), polygon));
    }
  }

  std::vector<std::vector<vtkIdType> > polygons;
  MergeTriFacePolygons(this, triFacePolygonMap, oririginalFaceTriFaceMap, contourPointEdgeMultiMap,
    originalEdges, polygons);

  // next, get the contour polygons.

  // inside the callback lambda function defined below, we can only use pointers to capture
  // variables
  std::vector<std::vector<vtkIdType> >* pPolygons = &polygons;

  function<void(vtkIdList*)> cb = [=](vtkIdList* poly) {
    vtkIdType nIds = poly->GetNumberOfIds();
    vector<vtkIdType> polygon;
    polygon.reserve(nIds);
    for (int i = 0; i < nIds; ++i)
    {
      polygon.push_back(poly->GetId(i));
    }
    if (!polygon.empty())
      pPolygons->push_back(polygon);
  };

  CreateContours(edgeFaceMap, faceEdgesVector, edgeContourPointMap, originalEdges, cb);

  // this next bit finds closed polyhedra by looking at disjoint sets of point ids
  // that hold the polyhedra. Note that if two closed polyhedra share one point
  // that they are identified as one closed polyhedron with two closed parts.
  while (!polygons.empty())
  {
    // the set of point ids that form a closed polyhedron
    unordered_set<vtkIdType> polyhedralIdSet;

    // this list holds the polygons by moving references
    // in the polygons list of polyhedral faces that
    // belong to the polyhedron being built.
    std::vector<std::vector<vtkIdType> > polyhedralFaceList;

    // while one face is added, keep looping all faces that
    // were not yet added. The face last added can make faces that were
    // skipped earlier be valid candidates now. At a certain point, no
    // faces can be added anymore, and the polyhedron is finished.
    bool add = true;
    while (add)
    {
      add = false;
      auto it = polygons.begin();
      while (it != polygons.end())
      {
        // If there are empty polygons, we erase them
        while (it != polygons.end() && !it->size())
        {
          it = polygons.erase(it);
        }
        if (it == polygons.end())
        {
          // All polygons were empty
          break;
        }
        if (!polyhedralIdSet.size())
        {
          // Insert seed polygon in the polyhedron
          polyhedralIdSet.insert(it->begin(), it->end());
          continue;
        }

        const vector<vtkIdType>& nextPolygon = *it;
        auto polygon_it = nextPolygon.begin();
        bool insertedNextPolygon = false;
        for (; polygon_it != nextPolygon.end(); ++polygon_it)
        {
          // Check if the next polygon has any common point with the seed polygon
          if (polyhedralIdSet.find(*polygon_it) != polyhedralIdSet.end())
          {
            polyhedralIdSet.insert(nextPolygon.begin(), nextPolygon.end());
            polyhedralFaceList.emplace_back(std::move(*it));
            it = polygons.erase(it);
            // We might have missed a polygon earlier because
            // polyhedralIdSet has new ids now
            // this flag allows to scan again the list polygons
            add = true;
            insertedNextPolygon = true;
            // We found a polygon, we can look for another one now
            break;
          }
        }
        if (it == polygons.end())
        {
          break;
        }
        if (!insertedNextPolygon)
        {
          ++it;
        }
      }
    }
    if (polyhedralFaceList.size())
    {
      // next, build the face stream for the polyhedron.
      vtkNew<vtkIdList> polyhedron;
      // first entry: # of faces:
      polyhedron->InsertNextId(static_cast<vtkIdType>(polyhedralFaceList.size()));
      for (const auto& polyFace : polyhedralFaceList)
      {
        // each face entry starts with # points in that face
        polyhedron->InsertNextId(static_cast<vtkIdType>(polyFace.size()));
        for (const auto& id : polyFace)
        {
          // then all global face point ids
          polyhedron->InsertNextId(id);
        }
      }

      vtkIdType newCellId = connectivity->InsertNextCell(polyhedron);
      // we've added a cell, so add cell data too
      outCd->CopyData(inCd, cellId, newCellId);
    }
  }
}

//----------------------------------------------------------------------------
void vtkPolyhedron::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "Triangle:\n";
  this->Triangle->PrintSelf(os, indent.GetNextIndent());

  os << indent << "Polygon:\n";
  this->Polygon->PrintSelf(os, indent.GetNextIndent());

  os << indent << "Tetra:\n";
  this->Tetra->PrintSelf(os, indent.GetNextIndent());

  os << indent << "Faces:\n";
  this->GlobalFaces->PrintSelf(os, indent.GetNextIndent());
}