1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticEdge.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticEdge
* @brief cell represents a parabolic, isoparametric edge
*
* vtkQuadraticEdge is a concrete implementation of vtkNonLinearCell to
* represent a one-dimensional, 3-nodes, isoparametric parabolic line. The
* interpolation is the standard finite element, quadratic isoparametric
* shape function. The cell includes a mid-edge node. The ordering of the
* three points defining the cell is point ids (0,1,2) where id #2 is the
* midedge node.
*
* @sa
* vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticWedge
* vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid
*/
#ifndef vtkQuadraticEdge_h
#define vtkQuadraticEdge_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkLine;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticEdge : public vtkNonLinearCell
{
public:
static vtkQuadraticEdge* New();
vtkTypeMacro(vtkQuadraticEdge, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_QUADRATIC_EDGE; }
int GetCellDimension() override { return 1; }
int GetNumberOfEdges() override { return 0; }
int GetNumberOfFaces() override { return 0; }
vtkCell* GetEdge(int) override { return nullptr; }
vtkCell* GetFace(int) override { return nullptr; }
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this edge using scalar value provided. Like contouring, except
* that it cuts the edge to produce linear line segments.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* lines, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
/**
* Return the center of the quadratic tetra in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) override;
static void InterpolationFunctions(const double pcoords[3], double weights[3]);
static void InterpolationDerivs(const double pcoords[3], double derivs[3]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[3]) override
{
vtkQuadraticEdge::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[3]) override
{
vtkQuadraticEdge::InterpolationDerivs(pcoords, derivs);
}
//@}
protected:
vtkQuadraticEdge();
~vtkQuadraticEdge() override;
vtkLine* Line;
vtkDoubleArray* Scalars; // used to avoid New/Delete in contouring/clipping
private:
vtkQuadraticEdge(const vtkQuadraticEdge&) = delete;
void operator=(const vtkQuadraticEdge&) = delete;
};
//----------------------------------------------------------------------------
inline int vtkQuadraticEdge::GetParametricCenter(double pcoords[3])
{
pcoords[0] = 0.5;
pcoords[1] = pcoords[2] = 0.;
return 0;
}
#endif
|