1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticHexahedron.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticHexahedron
* @brief cell represents a parabolic, 20-node isoparametric hexahedron
*
* vtkQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to
* represent a three-dimensional, 20-node isoparametric parabolic
* hexahedron. The interpolation is the standard finite element, quadratic
* isoparametric shape function. The cell includes a mid-edge node. The
* ordering of the twenty points defining the cell is point ids (0-7,8-19)
* where point ids 0-7 are the eight corner vertices of the cube; followed by
* twelve midedge nodes (8-19). Note that these midedge nodes correspond lie
* on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7),
* (7,4), (0,4), (1,5), (2,6), (3,7).
*
* @sa
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
* vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge
*/
#ifndef vtkQuadraticHexahedron_h
#define vtkQuadraticHexahedron_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkQuadraticQuad;
class vtkHexahedron;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticHexahedron : public vtkNonLinearCell
{
public:
static vtkQuadraticHexahedron* New();
vtkTypeMacro(vtkQuadraticHexahedron, vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) override;
//@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() override { return VTK_QUADRATIC_HEXAHEDRON; }
int GetCellDimension() override { return 3; }
int GetNumberOfEdges() override { return 12; }
int GetNumberOfFaces() override { return 6; }
vtkCell* GetEdge(int) override;
vtkCell* GetFace(int) override;
//@}
int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
double& dist2, double weights[]) override;
void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
void Derivatives(
int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
double* GetParametricCoords() override;
/**
* Clip this quadratic hexahedron using scalar value provided. Like
* contouring, except that it cuts the hex to produce linear
* tetrahedron.
*/
void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
double pcoords[3], int& subId) override;
static void InterpolationFunctions(const double pcoords[3], double weights[20]);
static void InterpolationDerivs(const double pcoords[3], double derivs[60]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(const double pcoords[3], double weights[20]) override
{
vtkQuadraticHexahedron::InterpolationFunctions(pcoords, weights);
}
void InterpolateDerivs(const double pcoords[3], double derivs[60]) override
{
vtkQuadraticHexahedron::InterpolationDerivs(pcoords, derivs);
}
//@}
//@{
/**
* Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
* Ids are related to the cell, not to the dataset.
*
* @note The return type changed. It used to be int*, it is now const vtkIdType*.
* This is so ids are unified between vtkCell and vtkPoints.
*/
static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
static const vtkIdType* GetFaceArray(vtkIdType faceId);
//@}
/**
* Given parametric coordinates compute inverse Jacobian transformation
* matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
* function derivatives.
*/
void JacobianInverse(const double pcoords[3], double** inverse, double derivs[60]);
protected:
vtkQuadraticHexahedron();
~vtkQuadraticHexahedron() override;
vtkQuadraticEdge* Edge;
vtkQuadraticQuad* Face;
vtkHexahedron* Hex;
vtkPointData* PointData;
vtkCellData* CellData;
vtkDoubleArray* CellScalars;
vtkDoubleArray* Scalars;
void Subdivide(
vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars);
private:
vtkQuadraticHexahedron(const vtkQuadraticHexahedron&) = delete;
void operator=(const vtkQuadraticHexahedron&) = delete;
};
#endif
|