File: vtkReebGraphSimplificationMetric.h

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (106 lines) | stat: -rw-r--r-- 3,841 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkReebGraphSimplificationMetric.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkReebGraphSimplificationMetric
 * @brief   abstract class for custom Reeb graph
 * simplification metric design.
 *
 * This class makes it possible to design customized simplification metric
 * evaluation algorithms, enabling the user to control the definition of what
 * should be considered as noise or signal in the topological filtering process.
 *
 * References:
 * "Topological persistence and simplification",
 * H. Edelsbrunner, D. Letscher, and A. Zomorodian,
 * Discrete Computational Geometry, 28:511-533, 2002.
 *
 * "Extreme elevation on a 2-manifold",
 * P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang,
 * ACM Symposium on Computational Geometry, pp. 357-365, 2004.
 *
 * "Simplifying flexible isosurfaces using local geometric measures",
 * H. Carr, J. Snoeyink, M van de Panne,
 * IEEE Visualization, 497-504, 2004
 *
 * "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees",
 * J. Tierny, A. Gyulassy, E. Simon, V. Pascucci,
 * IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184, 2009.
 *
 *
 * See Graphics/Testing/Cxx/TestReebGraph.cxx for an example of concrete
 * implementation.
 */

#ifndef vtkReebGraphSimplificationMetric_h
#define vtkReebGraphSimplificationMetric_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"

class vtkDataSet;
class vtkDataArray;
class vtkAbstractArray;

class VTKCOMMONDATAMODEL_EXPORT vtkReebGraphSimplificationMetric : public vtkObject
{
public:
  static vtkReebGraphSimplificationMetric* New();
  vtkTypeMacro(vtkReebGraphSimplificationMetric, vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  //@{
  /**
   * Set the lowest possible value for the custom metric space.
   * This value can be set prior to launching the Reeb graph simplification and
   * then used inside the ComputeMetric call to make sure the returned value of
   * ComputeMetric call is indeed between 0 and 1.
   */
  vtkSetMacro(LowerBound, double);
  vtkGetMacro(LowerBound, double);
  //@}

  //@{
  /**
   * Set the highest possible value for the custom metric space.
   * This value can be set prior to launching the Reeb graph simplification and
   * then used inside the ComputeMetric call to make sure the returned value of
   * ComputeMetric call is indeed between 0 and 1.
   */
  vtkSetMacro(UpperBound, double);
  vtkGetMacro(UpperBound, double);
  //@}

  /**
   * Function to implement in your simplification metric algorithm.
   * Given the input mesh and the Ids of the vertices living on the Reeb graph
   * arc to consider for removal, you should return a value between 0 and 1 (the
   * smallest the more likely the arc will be removed, depending on the
   * user-defined simplification threshold).
   */
  virtual double ComputeMetric(vtkDataSet* mesh, vtkDataArray* field, vtkIdType startCriticalPoint,
    vtkAbstractArray* vertexList, vtkIdType endCriticalPoint);

protected:
  vtkReebGraphSimplificationMetric();
  ~vtkReebGraphSimplificationMetric() override;

  double LowerBound, UpperBound;

private:
  vtkReebGraphSimplificationMetric(const vtkReebGraphSimplificationMetric&) = delete;
  void operator=(const vtkReebGraphSimplificationMetric&) = delete;
};

#endif