File: vtkStaticCellLocator.cxx

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (1647 lines) | stat: -rw-r--r-- 54,636 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkStaticCellLocator.cxx

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
#include "vtkStaticCellLocator.h"

#include "vtkBoundingBox.h"
#include "vtkBox.h"
#include "vtkCellArray.h"
#include "vtkDoubleArray.h"
#include "vtkGenericCell.h"
#include "vtkIdList.h"
#include "vtkIntArray.h"
#include "vtkMath.h"
#include "vtkMergePoints.h"
#include "vtkObjectFactory.h"
#include "vtkPlane.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkSMPThreadLocal.h"
#include "vtkSMPThreadLocalObject.h"
#include "vtkSMPTools.h"

#include <functional>
#include <queue>
#include <vector>

vtkStandardNewMacro(vtkStaticCellLocator);

//----------------------------------------------------------------------------
// Helper classes to support efficient computing, and threaded execution.
//
// Note that are two key classes: the vtkCellBinner and the vtkCellProcessor.
// the Binner is used to perform binning operations are cells are placed into
// the uniformally subdivided bin space. The Processor is a templated class
// (templated over ID type to reduce memory and speed sorting when the cell
// ids are small).
//
// The algorithm is multipass. First, the overall bounds of the data is
// determined, and then the space is subdivided into uniform bins. Next each
// cell is visited, it's bounds are obtained. and the ijk footprint into the
// binning is obtained. The footprint implicitly indicates the number of bins
// the cell touches (i.e., the number of cell fragment tuples
// (cellId,binId)), and this number is stored in an array. Once all cells
// have been visited (in parallel), a prefix sum is executed on the counts to
// determine the total number of fragments. Next another (parallel) pass is
// made over each cell and the fragments are placed into a tuple array (using
// the count offsets), which is then (parallel) sorted on binIds. This
// produces contiguous runs of cellIds for each bin. Finally, integral
// offsets are created that for each cell point at the beginning of each
// run.
//
// This algorithm is implemented into two parts as mentioned previously. The
// Binner is non templated and simply deals with cell bounds and eventually
// computes the number of cell fragments. Depending on the size of the
// fragment count, a templated class of either int or vtkIdType is
// created. Different types are used because of 1) significant reduction in
// memory and 2) significant speed up in the parallel sort.

//========================= CELL LOCATOR MACHINERY ====================================

// PIMPLd class which wraps binning functionality.
struct vtkCellBinner
{
  vtkStaticCellLocator* Locator; // locater
  vtkIdType NumCells;            // the number of cells to bin
  vtkIdType NumBins;
  vtkIdType NumFragments; // total number of (cellId,binId) tuples

  // These are internal data members used for performance reasons
  vtkDataSet* DataSet;
  int Divisions[3];
  double Bounds[6];
  double* CellBounds;
  vtkIdType* Counts;
  double H[3];
  double hX, hY, hZ;
  double fX, fY, fZ, bX, bY, bZ;
  vtkIdType xD, yD, zD, xyD;
  double binTol;

  // Construction
  vtkCellBinner(vtkStaticCellLocator* loc, vtkIdType numCells, vtkIdType numBins)
  {
    this->Locator = loc;
    this->NumCells = numCells;
    this->NumBins = numBins;
    this->NumFragments = 0;
    this->DataSet = loc->GetDataSet();
    loc->GetDivisions(this->Divisions);

    // Allocate data. Note that these arrays are deleted elsewhere
    this->CellBounds = new double[numCells * 6];
    this->Counts = new vtkIdType[numCells + 1]; // one extra holds total count

    // This is done to cause non-thread safe initialization to occur due to
    // side effects from GetCellBounds().
    this->DataSet->GetCellBounds(0, this->CellBounds);

    // Setup internal data members for more efficient processing.
    this->hX = this->H[0] = loc->H[0];
    this->hY = this->H[1] = loc->H[1];
    this->hZ = this->H[2] = loc->H[2];
    this->fX = 1.0 / loc->H[0];
    this->fY = 1.0 / loc->H[1];
    this->fZ = 1.0 / loc->H[2];
    this->bX = this->Bounds[0] = loc->Bounds[0];
    this->Bounds[1] = loc->Bounds[1];
    this->bY = this->Bounds[2] = loc->Bounds[2];
    this->Bounds[3] = loc->Bounds[3];
    this->bZ = this->Bounds[4] = loc->Bounds[4];
    this->Bounds[5] = loc->Bounds[5];
    this->xD = this->Divisions[0];
    this->yD = this->Divisions[1];
    this->zD = this->Divisions[2];
    this->xyD = this->Divisions[0] * this->Divisions[1];
    this->binTol = 0.01 * sqrt(this->hX * this->hX + this->hY * this->hY + this->hZ * this->hZ);
  }

  ~vtkCellBinner()
  {
    delete[] this->CellBounds;
    delete[] this->Counts;
  }

  void GetBinIndices(const double* x, int ijk[3]) const
  {
    // Compute point index. Make sure it lies within range of locator.
    ijk[0] = static_cast<int>(((x[0] - bX) * fX));
    ijk[1] = static_cast<int>(((x[1] - bY) * fY));
    ijk[2] = static_cast<int>(((x[2] - bZ) * fZ));

    ijk[0] = (ijk[0] < 0 ? 0 : (ijk[0] >= xD ? xD - 1 : ijk[0]));
    ijk[1] = (ijk[1] < 0 ? 0 : (ijk[1] >= yD ? yD - 1 : ijk[1]));
    ijk[2] = (ijk[2] < 0 ? 0 : (ijk[2] >= zD ? zD - 1 : ijk[2]));
  }

  void GetBinIndices(vtkIdType binId, int ijk[3]) const
  {
    ijk[0] = binId % xD;
    vtkIdType tmp = binId / xD;
    ijk[1] = tmp % yD;
    ijk[2] = tmp / yD;
  }

  // Given a point x, determine which bin it is in. Note that points
  // are clamped to lie inside of the locator.
  vtkIdType GetBinIndex(const double* x) const
  {
    int ijk[3];
    this->GetBinIndices(x, ijk);
    return ijk[0] + ijk[1] * xD + ijk[2] * xyD;
  }

  vtkIdType GetBinIndex(int ijk[3]) const { return ijk[0] + ijk[1] * xD + ijk[2] * xyD; }

  // These are helper functions
  vtkIdType CountBins(const int ijkMin[3], const int ijkMax[3])
  {
    // Ensure all temporary values are vtkIdType:
    vtkIdType result = ijkMax[0] - ijkMin[0] + 1;
    result *= ijkMax[1] - ijkMin[1] + 1;
    result *= ijkMax[2] - ijkMin[2] + 1;

    return result;
  }

  void Initialize() {}

  void operator()(vtkIdType cellId, vtkIdType endCellId)
  {
    double* bds = this->CellBounds + cellId * 6;
    vtkIdType* counts = this->Counts + cellId;
    double xmin[3], xmax[3];
    int ijkMin[3], ijkMax[3];

    for (; cellId < endCellId; ++cellId, bds += 6)
    {
      this->DataSet->GetCellBounds(cellId, bds);
      double tol = this->binTol;
      xmin[0] = bds[0] - tol;
      xmin[1] = bds[2] - tol;
      xmin[2] = bds[4] - tol;
      xmax[0] = bds[1] + tol;
      xmax[1] = bds[3] + tol;
      xmax[2] = bds[5] + tol;

      this->GetBinIndices(xmin, ijkMin);
      this->GetBinIndices(xmax, ijkMax);

      *counts++ = this->CountBins(ijkMin, ijkMax);
    }
  }

  void Reduce()
  {
    // Perform prefix sum
    vtkIdType* counts = this->Counts;
    vtkIdType numBins, total = 0, numCells = this->NumCells;
    for (vtkIdType i = 0; i < numCells; ++i)
    {
      numBins = *counts;
      *counts++ = total;
      total += numBins;
    }
    this->NumFragments = total;
  }

}; // vtkCellBinner

//-----------------------------------------------------------------------------
// The following tuple is what is sorted in the map. Note that it is templated
// because depending on the number of points / buckets to process we may want
// to use vtkIdType. Otherwise for performance reasons it's best to use an int
// (or other integral type). Typically sort() is 25-30% faster on smaller
// integral types, plus it takes a heck less memory (when vtkIdType is 64-bit
// and int is 32-bit).
template <typename TId>
struct CellFragments
{
  TId CellId; // originating cell id
  TId BinId;  // i-j-k index into bin space

  // Operator< used to support the subsequent sort operation.
  bool operator<(const CellFragments& tuple) const { return BinId < tuple.BinId; }
};

// Perform locator operations like FindCell. Uses templated subclasses
// to reduce memory and enhance speed.
struct vtkCellProcessor
{
  vtkCellBinner* Binner;
  vtkDataSet* DataSet;
  double* CellBounds;
  vtkIdType* Counts;
  vtkIdType NumFragments;
  vtkIdType NumCells;
  vtkIdType NumBins;
  int BatchSize;
  int NumBatches;
  vtkIdType xD, xyD;

  vtkCellProcessor(vtkCellBinner* cb)
    : Binner(cb)
  {
    this->DataSet = cb->DataSet;
    this->CellBounds = cb->CellBounds;
    this->Counts = cb->Counts;
    this->NumCells = cb->NumCells;
    this->NumFragments = cb->NumFragments;
    this->NumBins = cb->NumBins;
    this->BatchSize = 10000; // building the offset array
    this->NumBatches =
      static_cast<int>(ceil(static_cast<double>(this->NumFragments) / this->BatchSize));

    xD = cb->xD; // for speeding up computation
    xyD = cb->xyD;
  }

  virtual ~vtkCellProcessor() = default;

  // Satisfy cell locator API
  virtual vtkIdType FindCell(
    const double pos[3], vtkGenericCell* cell, double pcoords[3], double* weights) = 0;
  virtual void FindCellsWithinBounds(double* bbox, vtkIdList* cells) = 0;
  virtual void FindCellsAlongLine(
    const double p1[3], const double p2[3], double tol, vtkIdList* cells) = 0;
  virtual void FindCellsAlongPlane(
    const double o[3], const double n[3], double tolerance, vtkIdList* cells) = 0;
  virtual int IntersectWithLine(const double a0[3], const double a1[3], double tol, double& t,
    double x[3], double pcoords[3], int& subId, vtkIdType& cellId, vtkGenericCell* cell) = 0;
  virtual vtkIdType FindClosestPointWithinRadius(const double x[3], double radius,
    double closestPoint[3], vtkGenericCell* cell, vtkIdType& cellId, int& subId, double& dist2,
    int& inside) = 0;

  // Convenience for computing
  virtual int IsEmpty(vtkIdType binId) = 0;
};

namespace
{ // anonymous to wrap non-public stuff

// Typed subclass
template <typename T>
struct CellProcessor : public vtkCellProcessor
{
  // Type dependent members
  CellFragments<T>* Map; // the map to be sorted
  T* Offsets;            // offsets for each bin into the map

  CellProcessor(vtkCellBinner* cb)
    : vtkCellProcessor(cb)
  {
    // Prepare to sort
    // one extra to simplify traversal
    this->Map = new CellFragments<T>[this->NumFragments + 1];
    this->Map[this->NumFragments].BinId = this->NumBins;
    this->Offsets = new T[this->NumBins + 1];
    this->Offsets[this->NumBins] = this->NumFragments;
  }

  ~CellProcessor() override
  {
    delete[] this->Map;
    delete[] this->Offsets;
  }

  // The number of cell ids in a bin is determined by computing the
  // difference between the offsets into the sorted cell fragments array.
  T GetNumberOfIds(vtkIdType binNum) { return (this->Offsets[binNum + 1] - this->Offsets[binNum]); }

  // Given a bin number, return the cells ids in that bin.
  const CellFragments<T>* GetIds(vtkIdType binNum) { return this->Map + this->Offsets[binNum]; }

  void ComputeBinBounds(int i, int j, int k, double binBounds[6])
  {
    double* bds = this->Binner->Bounds;
    double* h = this->Binner->H;
    binBounds[0] = bds[0] + i * h[0];
    binBounds[1] = binBounds[0] + h[0];
    binBounds[2] = bds[2] + j * h[1];
    binBounds[3] = binBounds[2] + h[1];
    binBounds[4] = bds[4] + k * h[2];
    binBounds[5] = binBounds[4] + h[2];
  }

  int IsInBinBounds(double binBounds[6], double x[3], double binTol = 0.0)
  {
    if ((binBounds[0] - binTol) <= x[0] && x[0] <= (binBounds[1] + binTol) &&
      (binBounds[2] - binTol) <= x[1] && x[1] <= (binBounds[3] + binTol) &&
      (binBounds[4] - binTol) <= x[2] && x[2] <= (binBounds[5] + binTol))
    {
      return 1;
    }
    else
    {
      return 0;
    }
  }

  // Methods to satisfy vtkCellProcessor virtual API
  vtkIdType FindCell(
    const double pos[3], vtkGenericCell* cell, double pcoords[3], double* weights) override;
  void FindCellsWithinBounds(double* bbox, vtkIdList* cells) override;
  void FindCellsAlongLine(
    const double p1[3], const double p2[3], double tol, vtkIdList* cells) override;
  void FindCellsAlongPlane(
    const double o[3], const double n[3], double tolerance, vtkIdList* cells) override;
  int IntersectWithLine(const double a0[3], const double a1[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId, vtkIdType& cellId, vtkGenericCell* cell) override;
  vtkIdType FindClosestPointWithinRadius(const double x[3], double radius, double closestPoint[3],
    vtkGenericCell* cell, vtkIdType& cellId, int& subId, double& dist2, int& inside) override;
  int IsEmpty(vtkIdType binId) override
  {
    return (this->GetNumberOfIds(static_cast<T>(binId)) > 0 ? 0 : 1);
  }

  // This functor is used to perform the final cell binning
  void Initialize() {}

  void operator()(vtkIdType cellId, vtkIdType endCellId)
  {
    const double* bds = this->CellBounds + cellId * 6;
    CellFragments<T>* t = this->Map + *(this->Counts + cellId);
    double xmin[3], xmax[3];
    int ijkMin[3], ijkMax[3];
    int i, j, k;
    vtkIdType binId;

    for (; cellId < endCellId; ++cellId, bds += 6)
    {
      double tol = this->Binner->binTol;
      xmin[0] = bds[0] - tol;
      xmin[1] = bds[2] - tol;
      xmin[2] = bds[4] - tol;
      xmax[0] = bds[1] + tol;
      xmax[1] = bds[3] + tol;
      xmax[2] = bds[5] + tol;

      this->Binner->GetBinIndices(xmin, ijkMin);
      this->Binner->GetBinIndices(xmax, ijkMax);

      for (k = ijkMin[2]; k <= ijkMax[2]; ++k)
      {
        for (j = ijkMin[1]; j <= ijkMax[1]; ++j)
        {
          for (i = ijkMin[0]; i <= ijkMax[0]; ++i)
          {
            binId = i + j * xD + k * xyD;
            t->CellId = cellId;
            t->BinId = binId;
            t++;
          }
        }
      }
    }
  }

  void Reduce() {}
}; // CellProcessor

// This functor class creates offsets for each cell into the sorted tuple
// array. The offsets enable random access to cells.
template <typename TId>
struct MapOffsets
{
  CellProcessor<TId>* Processor;
  CellFragments<TId>* Map;
  TId* Offsets;
  vtkIdType NumCells;
  int NumBins;
  vtkIdType NumFragments;
  int BatchSize;

  MapOffsets(CellProcessor<TId>* p)
    : Processor(p)
  {
    this->Map = p->Map;
    this->Offsets = p->Offsets;
    this->NumCells = p->NumCells;
    this->NumBins = p->NumBins;
    this->NumFragments = p->NumFragments;
    this->BatchSize = p->BatchSize;
  }

  // Traverse sorted points (i.e., tuples) and update bin offsets.
  void operator()(vtkIdType batch, vtkIdType batchEnd)
  {
    TId* offsets = this->Offsets;
    const CellFragments<TId>* curPt = this->Map + batch * this->BatchSize;
    const CellFragments<TId>* endBatchPt = this->Map + batchEnd * this->BatchSize;
    const CellFragments<TId>* endPt = this->Map + this->NumFragments;
    const CellFragments<TId>* prevPt;
    endBatchPt = (endBatchPt > endPt ? endPt : endBatchPt);

    // Special case at the very beginning of the mapped points array.  If
    // the first point is in bin# N, then all bins up and including
    // N must refer to the first point.
    if (curPt == this->Map)
    {
      prevPt = this->Map;
      std::fill_n(offsets, curPt->BinId + 1, 0); // point to the first points
    } // at the very beginning of the map (sorted points array)

    // We are entering this functor somewhere in the interior of the
    // mapped points array. All we need to do is point to the entry
    // position because we are interested only in prevPt->BinId.
    else
    {
      prevPt = curPt;
    } // else in the middle of a batch

    // Okay we have a starting point for a bin run. Now we can begin
    // filling in the offsets in this batch. A previous thread should
    // have/will have completed the previous and subsequent runs outside
    // of the [batch,batchEnd) range
    for (curPt = prevPt; curPt < endBatchPt;)
    {
      for (; curPt->BinId == prevPt->BinId && curPt <= endBatchPt; ++curPt)
      {
        ; // advance
      }
      // Fill in any gaps in the offset array
      std::fill_n(offsets + prevPt->BinId + 1, curPt->BinId - prevPt->BinId, curPt - this->Map);
      prevPt = curPt;
    } // for all batches in this range
  }   // operator()

}; // MapOffsets

//-----------------------------------------------------------------------------
template <typename T>
vtkIdType CellProcessor<T>::FindCell(
  const double pos[3], vtkGenericCell* cell, double pcoords[3], double* weights)
{
  vtkIdType binId = this->Binner->GetBinIndex(pos);
  T numIds = this->GetNumberOfIds(binId);

  // Only thread the evaluation if enough cells need to be processed
  if (numIds < 1)
  {
    return -1;
  }
  // Run through serially. A parallel implementation is possible but does
  // not seem to be much faster.
  else
  {
    const CellFragments<T>* cellIds = this->GetIds(binId);
    double dist2, *bounds, delta[3] = { 0.0, 0.0, 0.0 };
    int subId;
    vtkIdType cellId;

    for (int j = 0; j < numIds; j++)
    {
      cellId = cellIds[j].CellId;
      bounds = this->CellBounds + 6 * cellId;

      if (vtkMath::PointIsWithinBounds(pos, bounds, delta))
      {
        this->DataSet->GetCell(cellId, cell);
        if (cell->EvaluatePosition(pos, nullptr, subId, pcoords, dist2, weights) == 1)
        {
          return cellId;
        }
      } // in bounding box
    }   // for cells in this bin

    return -1; // nothing found
  }            // serial
}

//-----------------------------------------------------------------------------
template <typename T>
void CellProcessor<T>::FindCellsWithinBounds(double* bbox, vtkIdList* cells)
{
  vtkIdType binNum, numIds, jOffset, kOffset;
  int i, j, k, ii, ijkMin[3], ijkMax[3];
  double pMin[3], pMax[3];
  const CellFragments<T>* ids;

  cells->Reset();

  // Get the locator locations for the two extreme corners of the bounding box
  pMin[0] = bbox[0];
  pMin[1] = bbox[2];
  pMin[2] = bbox[4];
  pMax[0] = bbox[1];
  pMax[1] = bbox[3];
  pMax[2] = bbox[5];

  this->Binner->GetBinIndices(pMin, ijkMin);
  this->Binner->GetBinIndices(pMax, ijkMax);

  // Loop over the block of bins and add cells that have not yet been visited.
  for (k = ijkMin[2]; k <= ijkMax[2]; ++k)
  {
    kOffset = k * this->xyD;
    for (j = ijkMin[1]; j <= ijkMax[1]; ++j)
    {
      jOffset = j * this->xD;
      for (i = ijkMin[0]; i <= ijkMax[0]; ++i)
      {
        binNum = i + jOffset + kOffset;

        if ((numIds = this->GetNumberOfIds(binNum)) > 0)
        {
          ids = this->GetIds(binNum);
          for (ii = 0; ii < numIds; ii++)
          {
            // Could use query mechanism to speed up at some point
            cells->InsertUniqueId(ids[ii].CellId);
          } // for all points in bucket
        }   // if points in bucket
      }     // i-footprint
    }       // j-footprint
  }         // k-footprint
}

//-----------------------------------------------------------------------------
// This code traverses the cell locator by following the intersection ray. All
// cells in intersected bins are placed into the output cellId vtkIdList. See
// the IntersectWithLine method for more information on voxel traversal.
template <typename T>
void CellProcessor<T>::FindCellsAlongLine(
  const double a0[3], const double a1[3], double vtkNotUsed(tol), vtkIdList* cells)
{
  // Initialize the list of cells
  cells->Reset();

  // Make sure the bounding box of the locator is hit.
  double* bounds = this->Binner->Bounds;
  double curPos[3], curT, rayDir[3];
  vtkMath::Subtract(a1, a0, rayDir);
  if (vtkBox::IntersectBox(bounds, a0, rayDir, curPos, curT) == 0)
  {
    return;
  }

  // Okay process line
  int* ndivs = this->Binner->Divisions;
  vtkIdType prod = ndivs[0] * ndivs[1];
  double* h = this->Binner->H;
  T i, numCellsInBin;
  int ijk[3];
  vtkIdType idx, cId;
  double hitCellBoundsPosition[3], tHitCell;
  double step[3], next[3], tMax[3], tDelta[3];
  double binBounds[6];

  // Initialize intersection query array if necessary. This is done
  // locally to ensure thread safety.
  std::vector<unsigned char> cellHasBeenVisited(this->NumCells, 0);

  // Get the i-j-k point of intersection and bin index. This is
  // clamped to the boundary of the locator.
  this->Binner->GetBinIndices(curPos, ijk);
  idx = ijk[0] + ijk[1] * ndivs[0] + ijk[2] * prod;

  // Set up some traversal parameters for traversing through bins
  step[0] = (rayDir[0] >= 0.0) ? 1.0 : -1.0;
  step[1] = (rayDir[1] >= 0.0) ? 1.0 : -1.0;
  step[2] = (rayDir[2] >= 0.0) ? 1.0 : -1.0;

  // If the ray is going in the negative direction, then the next voxel boundary
  // is on the "-" direction so we stay in the current voxel.
  next[0] = bounds[0] + h[0] * (rayDir[0] >= 0.0 ? (ijk[0] + step[0]) : ijk[0]);
  next[1] = bounds[2] + h[1] * (rayDir[1] >= 0.0 ? (ijk[1] + step[1]) : ijk[1]);
  next[2] = bounds[4] + h[2] * (rayDir[2] >= 0.0 ? (ijk[2] + step[2]) : ijk[2]);

  tMax[0] = (rayDir[0] != 0.0) ? (next[0] - curPos[0]) / rayDir[0] : VTK_FLOAT_MAX;
  tMax[1] = (rayDir[1] != 0.0) ? (next[1] - curPos[1]) / rayDir[1] : VTK_FLOAT_MAX;
  tMax[2] = (rayDir[2] != 0.0) ? (next[2] - curPos[2]) / rayDir[2] : VTK_FLOAT_MAX;

  tDelta[0] = (rayDir[0] != 0.0) ? (h[0] / rayDir[0]) * step[0] : VTK_FLOAT_MAX;
  tDelta[1] = (rayDir[1] != 0.0) ? (h[1] / rayDir[1]) * step[1] : VTK_FLOAT_MAX;
  tDelta[2] = (rayDir[2] != 0.0) ? (h[2] / rayDir[2]) * step[2] : VTK_FLOAT_MAX;

  // Start walking through the bins, continue until traversed the entire
  // locator. Note that termination of the while(1) loop occurs when the ray
  // passes out of the locator via the break command.
  while (1)
  {
    if ((numCellsInBin = this->GetNumberOfIds(idx)) > 0) // there are some cell here
    {
      const CellFragments<T>* cellIds = this->GetIds(idx);
      this->ComputeBinBounds(ijk[0], ijk[1], ijk[2], binBounds);
      for (i = 0; i < numCellsInBin; i++)
      {
        cId = cellIds[i].CellId;
        if (cellHasBeenVisited[cId] == 0)
        {
          cellHasBeenVisited[cId] = 1;

          // check whether we intersect the cell bounds
          int hitCellBounds = vtkBox::IntersectBox(
            this->CellBounds + (6 * cId), a0, rayDir, hitCellBoundsPosition, tHitCell);

          if (hitCellBounds)
          {
            // Note because of cellHasBeenVisited[], we know this cId is unique
            cells->InsertNextId(cId);
          } // if (hitCellBounds)
        }   // if (!cellHasBeenVisited[cId])
      }     // over all cells in bin
    }       // if cells in bin

    // Advance to next voxel
    if (tMax[0] < tMax[1])
    {
      if (tMax[0] < tMax[2])
      {
        ijk[0] += static_cast<int>(step[0]);
        tMax[0] += tDelta[0];
        curT = tMax[0];
      }
      else
      {
        ijk[2] += static_cast<int>(step[2]);
        tMax[2] += tDelta[2];
        curT = tMax[2];
      }
    }
    else
    {
      if (tMax[1] < tMax[2])
      {
        ijk[1] += static_cast<int>(step[1]);
        tMax[1] += tDelta[1];
        curT = tMax[1];
      }
      else
      {
        ijk[2] += static_cast<int>(step[2]);
        tMax[2] += tDelta[2];
        curT = tMax[2];
      }
    }

    if (curT > 1.0 || ijk[0] < 0 || ijk[0] >= ndivs[0] || ijk[1] < 0 || ijk[1] >= ndivs[1] ||
      ijk[2] < 0 || ijk[2] >= ndivs[2])
    {
      break;
    }
    else
    {
      idx = ijk[0] + ijk[1] * ndivs[0] + ijk[2] * prod;
    }
  } // while still in locator
}

// This functor identifies candidate cells as to whether they may intersect
// a specified plane. Locator bins are culled first, and if they intersect
// the plane, then the cell bounding boxes are used.
template <typename TId>
struct CellPlaneCandidates
{
  CellProcessor<TId>* Processor;
  const vtkCellBinner* Binner;
  double Origin[3];
  double Normal[3];
  unsigned char* CellVisited;
  double BinOffsetX, BinOffsetY, BinOffsetZ;
  double BinRadius;

  CellPlaneCandidates(CellProcessor<TId>* p, const vtkCellBinner* b, const double* o,
    const double* n, unsigned char* visited)
    : Processor(p)
    , Binner(b)
    , CellVisited(visited)
  {
    this->Origin[0] = o[0];
    this->Origin[1] = o[1];
    this->Origin[2] = o[2];

    this->Normal[0] = n[0];
    this->Normal[1] = n[1];
    this->Normal[2] = n[2];
    vtkMath::Normalize(this->Normal);

    // Offset from the bin origin to the bin center
    this->BinOffsetX = this->Binner->hX / 2.0;
    this->BinOffsetY = this->Binner->hY / 2.0;
    this->BinOffsetZ = this->Binner->hZ / 2.0;

    // The BinRadius is used to cull bins quickly. It's a variant of a sphere
    // tree test (with the center of a sphere corrsponding to the center of a
    // bin). Note that the plane orientation affects the radius: the end
    // result is that a smaller sphere radius can typically be used (as
    // compared to using the 0.5*(diagonal length) of a bin). This radius
    // needs only to be computed once since the relative orientation of each
    // bin to the plane is unchanged during processing. The bin radius is
    // simply the maximum distance that one of the eight bin corner points is
    // away from a plane passing through the center of the bin.
    double x[3], d, dMax = 0.0;
    x[0] = -this->BinOffsetX;
    x[1] = -this->BinOffsetY;
    x[2] = -this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal); // simplified because plane passes through origin
    dMax = (d > dMax ? d : dMax);

    x[0] = this->BinOffsetX;
    x[1] = -this->BinOffsetY;
    x[2] = -this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal);
    dMax = (d > dMax ? d : dMax);

    x[0] = -this->BinOffsetX;
    x[1] = this->BinOffsetY;
    x[2] = -this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal);
    dMax = (d > dMax ? d : dMax);

    x[0] = this->BinOffsetX;
    x[1] = this->BinOffsetY;
    x[2] = -this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal);
    dMax = (d > dMax ? d : dMax);

    x[0] = -this->BinOffsetX;
    x[1] = -this->BinOffsetY;
    x[2] = this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal);
    dMax = (d > dMax ? d : dMax);

    x[0] = this->BinOffsetX;
    x[1] = -this->BinOffsetY;
    x[2] = this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal);
    dMax = (d > dMax ? d : dMax);

    x[0] = -this->BinOffsetX;
    x[1] = this->BinOffsetY;
    x[2] = this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal);
    dMax = (d > dMax ? d : dMax);

    x[0] = this->BinOffsetX;
    x[1] = this->BinOffsetY;
    x[2] = this->BinOffsetZ;
    d = vtkMath::Dot(x, this->Normal);
    dMax = (d > dMax ? d : dMax);

    this->BinRadius = dMax;
  }

  // Operate on slabs (e.g., z-slab) of bins. The algorithm works by checking
  // whether the current bin is intersected by the plane; if it is, then the
  // cell bounding box is evaluated as well. Note a potential data race
  // situation exists since a cell may be marked simultaneously (using the
  // same value). Since the same value will always be written this has never
  // been found to be an issue, although it is a potential problem.
  void operator()(vtkIdType k, vtkIdType kEnd)
  {
    double *o = this->Origin, *n = this->Normal;
    double center[3], d, *bounds;
    vtkIdType i, j, iEnd = this->Binner->Divisions[0], jEnd = this->Binner->Divisions[1];

    // Over all z slabs
    for (; k < kEnd; ++k)
    {
      center[2] = this->Binner->Bounds[4] + k * this->Binner->hZ + this->BinOffsetZ;
      for (j = 0; j < jEnd; ++j)
      {
        center[1] = this->Binner->Bounds[2] + j * this->Binner->hY + this->BinOffsetY;
        for (i = 0; i < iEnd; ++i)
        {
          center[0] = this->Binner->Bounds[0] + i * this->Binner->hX + this->BinOffsetX;

          // Now see if the bin could be intersected by the plane. It's a pseudo
          // sphere tree operation.
          d = vtkPlane::DistanceToPlane(center, n, o);
          if (d <= this->BinRadius)
          {
            vtkIdType cId, ii, numCellsInBin;
            vtkIdType bin = i + j * this->Binner->xD + k * this->Binner->xyD;
            if ((numCellsInBin = this->Processor->GetNumberOfIds(bin)) >
              0) // there are some cell here
            {
              const CellFragments<TId>* cellIds = this->Processor->GetIds(bin);
              for (ii = 0; ii < numCellsInBin; ii++)
              {
                cId = cellIds[ii].CellId;
                if (!this->CellVisited[cId])
                {
                  bounds = this->Processor->CellBounds + (6 * cId);
                  this->CellVisited[cId] = (vtkBox::IntersectWithPlane(bounds, o, n) ? 2 : 1);
                }
              }
            }
          } // if bin intersects
        }   // i
      }     // j
    }       // k
  }         // operator()
};

//-----------------------------------------------------------------------------
// This code evaluates cells in intersecting bins and places them in the
// output list.
template <typename T>
void CellProcessor<T>::FindCellsAlongPlane(
  const double o[3], const double n[3], double vtkNotUsed(tol), vtkIdList* cells)
{
  // Initialize the list of cells
  cells->Reset();

  // Make sure that the bounding box of the locator is intersected.
  double* bounds = this->Binner->Bounds;
  double origin[3];
  origin[0] = o[0];
  origin[1] = o[1];
  origin[2] = o[2];
  double normal[3];
  normal[0] = n[0];
  normal[1] = n[1];
  normal[2] = n[2];
  if (vtkBox::IntersectWithPlane(bounds, origin, normal) == 0)
  {
    return;
  }

  // Okay now evaluate which bins intersect the plane, and then the cells in
  // the bins. We do this in parallel and mark the cells. Later the marked
  // cells will be added (in serial) to the output list. cellHasBeenVisited
  // has three states: 0(not visited), 1(visited but not intersecting),
  // 2(visited and potential intersection candidate).
  std::vector<unsigned char> cellHasBeenVisited(this->NumCells, 0);

  // For now we will parallelize over z-slabs of bins.
  CellPlaneCandidates<T> cellCandidates(this, this->Binner, o, n, cellHasBeenVisited.data());
  vtkSMPTools::For(0, this->Binner->Divisions[2], cellCandidates);

  // Populate the output list.
  for (vtkIdType cellId = 0; cellId < this->NumCells; ++cellId)
  {
    if (cellHasBeenVisited[cellId] >= 2) // candidate
    {
      cells->InsertNextId(cellId);
    }
  }
}

//
//----------------------------------------------------------------------------
// Calculate the distance between the point x and the specified bounds
//
// WARNING!!!!! Be very careful altering this routine.  Simple changes to this
// routine can make it 25% slower!!!!
// Return closest point (if any) AND the cell on which this closest point lies
double Distance2ToBounds(const double x[3], double bounds[6])
{
  double distance;
  double deltas[3];

  // Are we within the bounds?
  if (x[0] >= bounds[0] && x[0] <= bounds[1] && x[1] >= bounds[2] && x[1] <= bounds[3] &&
    x[2] >= bounds[4] && x[2] <= bounds[5])
  {
    return 0.0;
  }

  deltas[0] = deltas[1] = deltas[2] = 0.0;

  // dx
  //
  if (x[0] < bounds[0])
  {
    deltas[0] = bounds[0] - x[0];
  }
  else if (x[0] > bounds[1])
  {
    deltas[0] = x[0] - bounds[1];
  }

  // dy
  //
  if (x[1] < bounds[2])
  {
    deltas[1] = bounds[2] - x[1];
  }
  else if (x[1] > bounds[3])
  {
    deltas[1] = x[1] - bounds[3];
  }

  // dz
  //
  if (x[2] < bounds[4])
  {
    deltas[2] = bounds[4] - x[2];
  }
  else if (x[2] > bounds[5])
  {
    deltas[2] = x[2] - bounds[5];
  }

  distance = vtkMath::Dot(deltas, deltas);
  return distance;
}

//-----------------------------------------------------------------------------
// Return closest point (if any) AND the cell on which this closest point lies
template <typename T>
vtkIdType CellProcessor<T>::FindClosestPointWithinRadius(const double x[3], double radius,
  double closestPoint[3], vtkGenericCell* cell, vtkIdType& closestCellId, int& closestSubId,
  double& minDist2, int& inside)
{
  std::vector<bool> binHasBeenQueued(this->NumBins, false);
  std::vector<bool> cellHasBeenVisited(this->NumCells, false);
  std::vector<double> weights(6);
  double pcoords[3], point[3], bds[6];
  double distance2ToCellBounds, dist2;
  int subId;
  int ijk[3];
  vtkIdType retVal = 0;

  using node = std::pair<double, vtkIdType>;
  std::priority_queue<node, std::vector<node>, std::greater<node> > queue;

  // first get ijk containing point
  vtkIdType binId = this->Binner->GetBinIndex(x);
  queue.push(std::make_pair(0.0, binId));
  binHasBeenQueued[binId] = true;

  // distance to closest point
  minDist2 = radius * radius;

  while (!queue.empty())
  {
    binId = queue.top().second;
    double binDist2 = queue.top().first;
    queue.pop();

    // stop if bounding box is further away than current closest point
    if (binDist2 > minDist2)
    {
      break;
    }

    // compute distance to cells in bin, if any
    T numIds = this->GetNumberOfIds(binId);
    if (numIds >= 1)
    {
      const CellFragments<T>* cellIds = this->GetIds(binId);
      double* bounds;
      vtkIdType cellId;

      for (int j = 0; j < numIds; j++)
      {
        cellId = cellIds[j].CellId;

        // skip if cell was already visited
        if (cellHasBeenVisited[cellId])
        {
          continue;
        }
        cellHasBeenVisited[cellId] = true;

        // compute distance to cell bounding box
        bounds = this->CellBounds + 6 * cellId;
        distance2ToCellBounds = Distance2ToBounds(x, bounds);

        // compute distance to cell only if distance to bounding box smaller than minDist2
        if (distance2ToCellBounds < minDist2)
        {
          this->DataSet->GetCell(cellId, cell);

          // make sure we have enough storage space for the weights
          unsigned nPoints = static_cast<unsigned>(cell->GetPointIds()->GetNumberOfIds());
          if (nPoints > weights.size())
          {
            weights.resize(2 * nPoints);
          }

          // evaluate the position to find the closest point
          // stat==(-1) is numerical error; stat==0 means outside;
          // stat=1 means inside. However, for real world performance,
          // we sometime select stat==0 cells if the distance is close
          // enough
          int stat = cell->EvaluatePosition(x, point, subId, pcoords, dist2, weights.data());

          if (stat != -1 && dist2 < minDist2)
          {
            retVal = 1;
            inside = stat;
            minDist2 = dist2;
            closestCellId = cellId;
            closestSubId = subId;
            closestPoint[0] = point[0];
            closestPoint[1] = point[1];
            closestPoint[2] = point[2];
          }
        }
      }
    }

    // queue neighbors, if they are not already processed
    this->Binner->GetBinIndices(binId, ijk);
    int ijkLo[3] = { std::max(ijk[0] - 1, 0), std::max(ijk[1] - 1, 0), std::max(ijk[2] - 1, 0) };
    int ijkHi[3] = { std::min(ijk[0] + 1, this->Binner->Divisions[0] - 1),
      std::min(ijk[1] + 1, this->Binner->Divisions[1] - 1),
      std::min(ijk[2] + 1, this->Binner->Divisions[2] - 1) };

    for (ijk[0] = ijkLo[0]; ijk[0] <= ijkHi[0]; ++ijk[0])
    {
      for (ijk[1] = ijkLo[1]; ijk[1] <= ijkHi[1]; ++ijk[1])
      {
        for (ijk[2] = ijkLo[2]; ijk[2] <= ijkHi[2]; ++ijk[2])
        {
          binId = this->Binner->GetBinIndex(ijk);
          if (!binHasBeenQueued[binId])
          {
            binHasBeenQueued[binId] = true;

            // get bin bounding box
            bds[0] = this->Binner->Bounds[0] + ijk[0] * this->Binner->hX;
            bds[2] = this->Binner->Bounds[2] + ijk[1] * this->Binner->hY;
            bds[4] = this->Binner->Bounds[3] + ijk[2] * this->Binner->hZ;
            bds[1] = bds[0] + this->Binner->hX;
            bds[3] = bds[2] + this->Binner->hY;
            bds[5] = bds[4] + this->Binner->hZ;

            // compute distance to box
            distance2ToCellBounds = Distance2ToBounds(x, bds);

            // add to queue
            queue.push(std::make_pair(distance2ToCellBounds, binId));
          }
        }
      }
    }
  }
  return retVal;
}

//-----------------------------------------------------------------------------
// This code traverses the cell locator by following the intersection ray. As
// each bin is intersected, the cells contained in the bin are
// intersected. The cell with the smallest parametric coordinate t is
// returned (assuming 0<=t<=1). Otherwise no intersection is returned. See
// for reference: A Fast Voxel Traversal Algorithm for Ray Tracing by John
// Amanatides & Andrew Woo. Also see the code repository which inspired some
// of this code:
// https://github.com/francisengelmann/fast_voxel_traversal/blob/master/main.cpp.
template <typename T>
int CellProcessor<T>::IntersectWithLine(const double a0[3], const double a1[3], double tol,
  double& t, double x[3], double pcoords[3], int& subId, vtkIdType& cellId, vtkGenericCell* cell)
{
  double* bounds = this->Binner->Bounds;
  int* ndivs = this->Binner->Divisions;
  vtkIdType prod = ndivs[0] * ndivs[1];
  double* h = this->Binner->H;
  T i, numCellsInBin;
  double rayDir[3];
  vtkMath::Subtract(a1, a0, rayDir);
  double curPos[3], curT, tMin = VTK_FLOAT_MAX;
  int ijk[3];
  vtkIdType idx, cId, bestCellId = (-1);
  double hitCellBoundsPosition[3], tHitCell;
  double step[3], next[3], tMax[3], tDelta[3];
  double binBounds[6], binTol = this->Binner->binTol;

  // Make sure the bounding box of the locator is hit.
  cellId = (-1);
  subId = 0;
  if (vtkBox::IntersectBox(bounds, a0, rayDir, curPos, curT) == 0)
  {
    return 0;
  }

  // Initialize intersection query array if necessary. This is done
  // locally to ensure thread safety.
  std::vector<unsigned char> cellHasBeenVisited(this->NumCells, 0);

  // Get the i-j-k point of intersection and bin index. This is
  // clamped to the boundary of the locator.
  this->Binner->GetBinIndices(curPos, ijk);
  idx = ijk[0] + ijk[1] * ndivs[0] + ijk[2] * prod;

  // Set up some traversal parameters for traversing through bins
  step[0] = (rayDir[0] >= 0.0) ? 1.0 : -1.0;
  step[1] = (rayDir[1] >= 0.0) ? 1.0 : -1.0;
  step[2] = (rayDir[2] >= 0.0) ? 1.0 : -1.0;

  // If the ray is going in the negative direction, then the next voxel boundary
  // is on the "-" direction so we stay in the current voxel.
  next[0] = bounds[0] + h[0] * (rayDir[0] >= 0.0 ? (ijk[0] + step[0]) : ijk[0]);
  next[1] = bounds[2] + h[1] * (rayDir[1] >= 0.0 ? (ijk[1] + step[1]) : ijk[1]);
  next[2] = bounds[4] + h[2] * (rayDir[2] >= 0.0 ? (ijk[2] + step[2]) : ijk[2]);

  tMax[0] = (rayDir[0] != 0.0) ? (next[0] - curPos[0]) / rayDir[0] : VTK_FLOAT_MAX;
  tMax[1] = (rayDir[1] != 0.0) ? (next[1] - curPos[1]) / rayDir[1] : VTK_FLOAT_MAX;
  tMax[2] = (rayDir[2] != 0.0) ? (next[2] - curPos[2]) / rayDir[2] : VTK_FLOAT_MAX;

  tDelta[0] = (rayDir[0] != 0.0) ? (h[0] / rayDir[0]) * step[0] : VTK_FLOAT_MAX;
  tDelta[1] = (rayDir[1] != 0.0) ? (h[1] / rayDir[1]) * step[1] : VTK_FLOAT_MAX;
  tDelta[2] = (rayDir[2] != 0.0) ? (h[2] / rayDir[2]) * step[2] : VTK_FLOAT_MAX;

  // Start walking through the bins, find the best cell of
  // intersection. Note that the ray may not penetrate all of the way
  // through the locator so may terminate when (t > 1.0).
  for (bestCellId = (-1); bestCellId < 0;)
  {
    if ((numCellsInBin = this->GetNumberOfIds(idx)) > 0) // there are some cell here
    {
      const CellFragments<T>* cellIds = this->GetIds(idx);
      this->ComputeBinBounds(ijk[0], ijk[1], ijk[2], binBounds);
      for (i = 0; i < numCellsInBin; i++)
      {
        cId = cellIds[i].CellId;
        if (cellHasBeenVisited[cId] == 0)
        {
          cellHasBeenVisited[cId] = 1;

          // check whether we intersect the cell bounds
          int hitCellBounds = vtkBox::IntersectBox(
            this->CellBounds + (6 * cId), a0, rayDir, hitCellBoundsPosition, tHitCell);

          if (hitCellBounds)
          {
            // now, do the expensive GetCell call and the expensive
            // intersect with line call
            this->DataSet->GetCell(cId, cell);
            if (cell->IntersectWithLine(a0, a1, tol, t, x, pcoords, subId) && t < tMin)
            {
              // Make sure that intersection occurs within this bin or else spurious cell
              // intersections can occur behind this bin which are not the correct answer.
              if (!this->IsInBinBounds(binBounds, x, binTol))
              {
                cellHasBeenVisited[cId] = 0; // mark the cell non-visited
              }
              else
              {
                tMin = t;
                bestCellId = cId;
              }
            } // if intersection
          }   // if (hitCellBounds)
        }     // if (!cellHasBeenVisited[cId])
      }       // over all cells in bin
    }         // if cells in bin

    // Exit before end of ray, saves a few cycles
    if (bestCellId >= 0)
    {
      break;
    }

    // Advance to next voxel
    if (tMax[0] < tMax[1])
    {
      if (tMax[0] < tMax[2])
      {
        ijk[0] += static_cast<int>(step[0]);
        tMax[0] += tDelta[0];
        curT = tMax[0];
      }
      else
      {
        ijk[2] += static_cast<int>(step[2]);
        tMax[2] += tDelta[2];
        curT = tMax[2];
      }
    }
    else
    {
      if (tMax[1] < tMax[2])
      {
        ijk[1] += static_cast<int>(step[1]);
        tMax[1] += tDelta[1];
        curT = tMax[1];
      }
      else
      {
        ijk[2] += static_cast<int>(step[2]);
        tMax[2] += tDelta[2];
        curT = tMax[2];
      }
    }

    if (curT > 1.0 || ijk[0] < 0 || ijk[0] >= ndivs[0] || ijk[1] < 0 || ijk[1] >= ndivs[1] ||
      ijk[2] < 0 || ijk[2] >= ndivs[2])
    {
      break;
    }
    else
    {
      idx = ijk[0] + ijk[1] * ndivs[0] + ijk[2] * prod;
    }

  } // for looking for valid intersected cell

  // If a cell has been intersected, recover the information and return.
  // This information could be cached....
  if (bestCellId >= 0)
  {
    this->DataSet->GetCell(bestCellId, cell);
    cell->IntersectWithLine(a0, a1, tol, t, x, pcoords, subId);

    // store the best cell id in the return "parameter"
    cellId = bestCellId;
    return 1;
  }

  return 0;
}

} // anonymous namespace

//-----------------------------------------------------------------------------
// Here is the VTK class proper.

//-----------------------------------------------------------------------------
vtkStaticCellLocator::vtkStaticCellLocator()
{
  this->CacheCellBounds = 1; // always cached

  this->Binner = nullptr;
  this->Processor = nullptr;

  this->NumberOfCellsPerNode = 10;
  this->Divisions[0] = this->Divisions[1] = this->Divisions[2] = 100;
  this->H[0] = this->H[1] = this->H[2] = 0.0;
  for (int i = 0; i < 6; i++)
  {
    this->Bounds[i] = 0;
  }

  this->MaxNumberOfBuckets = VTK_INT_MAX;
  this->LargeIds = false;
}

//-----------------------------------------------------------------------------
vtkStaticCellLocator::~vtkStaticCellLocator()
{
  this->FreeSearchStructure();
}

//-----------------------------------------------------------------------------
void vtkStaticCellLocator::FreeSearchStructure()
{
  if (this->Binner)
  {
    delete this->Binner;
    this->Binner = nullptr;
  }
  if (this->Processor)
  {
    delete this->Processor;
    this->Processor = nullptr;
  }
}

//-----------------------------------------------------------------------------
vtkIdType vtkStaticCellLocator::FindCell(
  double pos[3], double, vtkGenericCell* cell, double pcoords[3], double* weights)
{
  this->BuildLocator();
  if (!this->Processor)
  {
    return -1;
  }
  return this->Processor->FindCell(pos, cell, pcoords, weights);
}

//----------------------------------------------------------------------------
void vtkStaticCellLocator::FindClosestPoint(const double x[3], double closestPoint[3],
  vtkGenericCell* cell, vtkIdType& cellId, int& subId, double& dist2)
{
  int inside;
  double radius = vtkMath::Inf();
  double point[3] = { x[0], x[1], x[2] };
  this->FindClosestPointWithinRadius(
    point, radius, closestPoint, cell, cellId, subId, dist2, inside);
}

//----------------------------------------------------------------------------
vtkIdType vtkStaticCellLocator::FindClosestPointWithinRadius(double x[3], double radius,
  double closestPoint[3], vtkGenericCell* cell, vtkIdType& cellId, int& subId, double& dist2,
  int& inside)
{
  this->BuildLocator();
  if (!this->Processor)
  {
    return 0;
  }
  return this->Processor->FindClosestPointWithinRadius(
    x, radius, closestPoint, cell, cellId, subId, dist2, inside);
}

//-----------------------------------------------------------------------------
void vtkStaticCellLocator::FindCellsWithinBounds(double* bbox, vtkIdList* cells)
{
  this->BuildLocator();
  if (!this->Processor)
  {
    return;
  }
  return this->Processor->FindCellsWithinBounds(bbox, cells);
}

//-----------------------------------------------------------------------------
void vtkStaticCellLocator::FindCellsAlongLine(
  const double p1[3], const double p2[3], double tol, vtkIdList* cells)
{
  this->BuildLocator();
  if (!this->Processor)
  {
    return;
  }
  return this->Processor->FindCellsAlongLine(p1, p2, tol, cells);
}

//-----------------------------------------------------------------------------
void vtkStaticCellLocator::FindCellsAlongPlane(
  const double o[3], const double n[3], double tol, vtkIdList* cells)
{
  this->BuildLocator();
  if (!this->Processor)
  {
    return;
  }
  return this->Processor->FindCellsAlongPlane(o, n, tol, cells);
}

//-----------------------------------------------------------------------------
int vtkStaticCellLocator::IntersectWithLine(const double p1[3], const double p2[3], double tol,
  double& t, double x[3], double pcoords[3], int& subId, vtkIdType& cellId, vtkGenericCell* cell)
{
  this->BuildLocator();
  if (!this->Processor)
  {
    return 0;
  }
  return this->Processor->IntersectWithLine(p1, p2, tol, t, x, pcoords, subId, cellId, cell);
}

//-----------------------------------------------------------------------------
void vtkStaticCellLocator::BuildLocator()
{
  vtkDebugMacro(<< "Building static cell locator");

  // Do we need to build?
  if ((this->Binner != nullptr) && (this->BuildTime > this->MTime) &&
    (this->BuildTime > this->DataSet->GetMTime()))
  {
    return;
  }

  vtkIdType numCells;
  if (!this->DataSet || (numCells = this->DataSet->GetNumberOfCells()) < 1)
  {
    vtkErrorMacro(<< "No cells to build");
    return;
  }

  // Prepare
  if (this->Binner)
  {
    this->FreeSearchStructure();
  }

  // The bounding box can be slow
  int i, ndivs[3];
  const double* bounds = this->DataSet->GetBounds();
  vtkIdType numBins = static_cast<vtkIdType>(
    static_cast<double>(numCells) / static_cast<double>(this->NumberOfCellsPerNode));
  numBins = (numBins > this->MaxNumberOfBuckets ? this->MaxNumberOfBuckets : numBins);

  vtkBoundingBox bbox(bounds);
  if (this->Automatic)
  {
    bbox.ComputeDivisions(numBins, this->Bounds, ndivs);
  }
  else
  {
    bbox.Inflate(); // make sure non-zero volume
    bbox.GetBounds(this->Bounds);
    for (i = 0; i < 3; i++)
    {
      ndivs[i] = (this->Divisions[i] < 1 ? 1 : this->Divisions[i]);
    }
  }

  this->Divisions[0] = ndivs[0];
  this->Divisions[1] = ndivs[1];
  this->Divisions[2] = ndivs[2];
  numBins = static_cast<vtkIdType>(ndivs[0]) * static_cast<vtkIdType>(ndivs[1]) *
    static_cast<vtkIdType>(ndivs[2]);

  // Compute bin/bucket widths
  for (i = 0; i < 3; i++)
  {
    this->H[i] = (this->Bounds[2 * i + 1] - this->Bounds[2 * i]) / this->Divisions[i];
  }

  // Actually do the hard work of creating the locator. Clear out old stuff.
  delete this->Binner;
  delete this->Processor;
  this->Binner = new vtkCellBinner(this, numCells, numBins);
  vtkSMPTools::For(0, numCells, *(this->Binner));

  // Create sorted cell fragments tuples of (cellId,binId). Depending
  // on problem size, different types are used.
  vtkIdType numFragments = this->Binner->NumFragments;
  if (numFragments >= VTK_INT_MAX)
  {
    this->LargeIds = true;
    CellProcessor<vtkIdType>* processor = new CellProcessor<vtkIdType>(this->Binner);
    vtkSMPTools::For(0, numCells, *processor);
    vtkSMPTools::Sort(processor->Map, processor->Map + numFragments);
    MapOffsets<vtkIdType> mapOffsets(processor);
    vtkSMPTools::For(0, processor->NumBatches, mapOffsets);
    this->Processor = processor;
  }
  else
  {
    this->LargeIds = false;
    CellProcessor<int>* processor = new CellProcessor<int>(this->Binner);
    vtkSMPTools::For(0, numCells, *processor);
    vtkSMPTools::Sort(processor->Map, processor->Map + numFragments);
    MapOffsets<int> mapOffsets(processor);
    vtkSMPTools::For(0, processor->NumBatches, mapOffsets);
    this->Processor = processor;
  }

  this->BuildTime.Modified();
}

//-----------------------------------------------------------------------------
// Produce a polygonal representation of the locator. Each bin which contains
// a potential cell candidate contributes to the representation. Note that
// since the locator has only a single level, the level method parameter is
// ignored.
void vtkStaticCellLocator::GenerateRepresentation(int vtkNotUsed(level), vtkPolyData* pd)
{
  // Make sure locator has been built successfully
  this->BuildLocator();
  if (!this->Processor)
  {
    return;
  }

  vtkPoints* pts = vtkPoints::New();
  pts->SetDataTypeToFloat();
  vtkCellArray* polys = vtkCellArray::New();
  pd->SetPoints(pts);
  pd->SetPolys(polys);

  int* dims = this->Divisions;
  int i, j, k;
  vtkIdType idx, kOffset, jOffset, kSlice = dims[0] * dims[1], pIds[8];
  double* s = this->H;
  double x[3], xT[3], origin[3];
  origin[0] = this->Bounds[0];
  origin[1] = this->Bounds[2];
  origin[2] = this->Bounds[4];

  // A locator is used to avoid duplicate points
  vtkMergePoints* locator = vtkMergePoints::New();
  locator->InitPointInsertion(pts, this->Bounds, dims[0] * dims[1] * dims[2]);

  for (k = 0; k < dims[2]; k++)
  {
    x[2] = origin[2] + k * s[2];
    kOffset = k * kSlice;
    for (j = 0; j < dims[1]; j++)
    {
      x[1] = origin[1] + j * s[1];
      jOffset = j * dims[0];
      for (i = 0; i < dims[0]; i++)
      {
        x[0] = origin[0] + i * s[0];
        idx = i + jOffset + kOffset;

        // Check to see if bin contains anything
        // If so, insert up to eight points and six quad faces (depending on
        // local topology).
        if (!this->Processor->IsEmpty(idx))
        {
          // Points in (i-j-k) order. A locator is used to avoid duplicate points.
          locator->InsertUniquePoint(x, pIds[0]);
          xT[0] = x[0] + s[0];
          xT[1] = x[1];
          xT[2] = x[2];
          locator->InsertUniquePoint(xT, pIds[1]);
          xT[0] = x[0];
          xT[1] = x[1] + s[1];
          xT[2] = x[2];
          locator->InsertUniquePoint(xT, pIds[2]);
          xT[0] = x[0] + s[0];
          xT[1] = x[1] + s[1];
          xT[2] = x[2];
          locator->InsertUniquePoint(xT, pIds[3]);
          xT[0] = x[0];
          xT[1] = x[1];
          xT[2] = x[2] + s[2];
          locator->InsertUniquePoint(xT, pIds[4]);
          xT[0] = x[0] + s[0];
          xT[1] = x[1];
          xT[2] = x[2] + s[2];
          locator->InsertUniquePoint(xT, pIds[5]);
          xT[0] = x[0];
          xT[1] = x[1] + s[1];
          xT[2] = x[2] + s[2];
          locator->InsertUniquePoint(xT, pIds[6]);
          xT[0] = x[0] + s[0];
          xT[1] = x[1] + s[1];
          xT[2] = x[2] + s[2];
          locator->InsertUniquePoint(xT, pIds[7]);

          // Loop over all bins. Any bin containing cell candidates may
          // generate output. Faces are output if they are on the boundary of
          // the locator or if the bin neighbor contains no cells (i.e., there
          // are no face neighbors). This prevents duplicate faces.

          //  -x bin boundary face
          if (i == 0 || this->Processor->IsEmpty(idx - 1))
          {
            polys->InsertNextCell(4);
            polys->InsertCellPoint(pIds[0]);
            polys->InsertCellPoint(pIds[4]);
            polys->InsertCellPoint(pIds[6]);
            polys->InsertCellPoint(pIds[2]);
          }

          // +x boundary face
          if (i == (dims[0] - 1) || this->Processor->IsEmpty(idx + 1))
          {
            polys->InsertNextCell(4);
            polys->InsertCellPoint(pIds[1]);
            polys->InsertCellPoint(pIds[3]);
            polys->InsertCellPoint(pIds[7]);
            polys->InsertCellPoint(pIds[5]);
          }

          // -y boundary face
          if (j == 0 || this->Processor->IsEmpty(idx - dims[0]))
          {
            polys->InsertNextCell(4);
            polys->InsertCellPoint(pIds[0]);
            polys->InsertCellPoint(pIds[1]);
            polys->InsertCellPoint(pIds[5]);
            polys->InsertCellPoint(pIds[4]);
          }

          // +y boundary face
          if (j == (dims[1] - 1) || this->Processor->IsEmpty(idx + dims[0]))
          {
            polys->InsertNextCell(4);
            polys->InsertCellPoint(pIds[2]);
            polys->InsertCellPoint(pIds[6]);
            polys->InsertCellPoint(pIds[7]);
            polys->InsertCellPoint(pIds[3]);
          }

          // -z boundary face
          if (k == 0 || this->Processor->IsEmpty(idx - kSlice))
          {
            polys->InsertNextCell(4);
            polys->InsertCellPoint(pIds[0]);
            polys->InsertCellPoint(pIds[2]);
            polys->InsertCellPoint(pIds[3]);
            polys->InsertCellPoint(pIds[1]);
          }

          // +z boundary face
          if (k == (dims[2] - 1) || this->Processor->IsEmpty(idx + kSlice))
          {
            polys->InsertNextCell(4);
            polys->InsertCellPoint(pIds[4]);
            polys->InsertCellPoint(pIds[5]);
            polys->InsertCellPoint(pIds[7]);
            polys->InsertCellPoint(pIds[6]);
          }
        } // if not empty
      }   // x
    }     // y
  }       // z

  // Clean up
  locator->Delete();
  polys->Delete();
  pts->Delete();
}

//-----------------------------------------------------------------------------
void vtkStaticCellLocator::PrintSelf(ostream& os, vtkIndent indent)
{
  // Cell bounds are always cached
  this->CacheCellBounds = 1;
  this->Superclass::PrintSelf(os, indent);

  os << indent << "Max Number Of Buckets: " << this->MaxNumberOfBuckets << "\n";

  os << indent << "Large IDs: " << this->LargeIds << "\n";
}