File: vtkTetra.h

package info (click to toggle)
vtk9 9.0.1%2Bdfsg1-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 133,688 kB
  • sloc: cpp: 1,568,287; ansic: 208,587; python: 87,847; xml: 8,022; java: 4,509; yacc: 4,027; sh: 2,515; perl: 2,183; lex: 1,766; objc: 143; makefile: 126; tcl: 59
file content (274 lines) | stat: -rw-r--r-- 10,434 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkTetra.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkTetra
 * @brief   a 3D cell that represents a tetrahedron
 *
 * vtkTetra is a concrete implementation of vtkCell to represent a 3D
 * tetrahedron. vtkTetra uses the standard isoparametric shape functions
 * for a linear tetrahedron. The tetrahedron is defined by the four points
 * (0-3); where (0,1,2) is the base of the tetrahedron which, using the
 * right hand rule, forms a triangle whose normal points in the direction
 * of the fourth point.
 *
 * @sa
 * vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge
 */

#ifndef vtkTetra_h
#define vtkTetra_h

#include "vtkCell3D.h"
#include "vtkCommonDataModelModule.h" // For export macro

class vtkLine;
class vtkTriangle;
class vtkUnstructuredGrid;
class vtkIncrementalPointLocator;

class VTKCOMMONDATAMODEL_EXPORT vtkTetra : public vtkCell3D
{
public:
  static vtkTetra* New();
  vtkTypeMacro(vtkTetra, vtkCell3D);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  //@{
  /**
   * See vtkCell3D API for description of these methods.
   */
  void GetEdgePoints(vtkIdType edgeId, const vtkIdType*& pts) override;
  // @deprecated Replaced by GetEdgePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
  VTK_LEGACY(virtual void GetEdgePoints(int edgeId, int*& pts) override);
  vtkIdType GetFacePoints(vtkIdType faceId, const vtkIdType*& pts) override;
  // @deprecated Replaced by GetFacePoints(vtkIdType, const vtkIdType*&) as of VTK 9.0
  VTK_LEGACY(virtual void GetFacePoints(int faceId, int*& pts) override);
  void GetEdgeToAdjacentFaces(vtkIdType edgeId, const vtkIdType*& pts) override;
  vtkIdType GetFaceToAdjacentFaces(vtkIdType faceId, const vtkIdType*& faceIds) override;
  vtkIdType GetPointToIncidentEdges(vtkIdType pointId, const vtkIdType*& edgeIds) override;
  vtkIdType GetPointToIncidentFaces(vtkIdType pointId, const vtkIdType*& faceIds) override;
  vtkIdType GetPointToOneRingPoints(vtkIdType pointId, const vtkIdType*& pts) override;
  bool GetCentroid(double centroid[3]) const override;
  bool IsInsideOut() override;
  //@}

  /**
   * static constexpr handle on the number of points.
   */
  static constexpr vtkIdType NumberOfPoints = 4;

  /**
   * static contexpr handle on the number of faces.
   */
  static constexpr vtkIdType NumberOfEdges = 6;

  /**
   * static contexpr handle on the number of edges.
   */
  static constexpr vtkIdType NumberOfFaces = 4;

  /**
   * static contexpr handle on the maximum face size. It can also be used
   * to know the number of faces adjacent to one face.
   */
  static constexpr vtkIdType MaximumFaceSize = 3;

  /**
   * static constexpr handle on the maximum valence of this cell.
   * The valence of a vertex is the number of incident edges (or equivalently faces)
   * to this vertex. It is also equal to the size of a one ring neighborhood of a vertex.
   */
  static constexpr vtkIdType MaximumValence = 3;

  //@{
  /**
   * See the vtkCell API for descriptions of these methods.
   */
  int GetCellType() override { return VTK_TETRA; }
  int GetNumberOfEdges() override { return 6; }
  int GetNumberOfFaces() override { return 4; }
  vtkCell* GetEdge(int edgeId) override;
  vtkCell* GetFace(int faceId) override;
  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
    vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
  void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
    vtkCellArray* connectivity, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
    vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
  int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
    double& dist2, double weights[]) override;
  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
    double pcoords[3], int& subId) override;
  int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
  void Derivatives(
    int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
  double* GetParametricCoords() override;
  //@}

  /**
   * Return the case table for table-based isocontouring (aka marching cubes
   * style implementations). A linear 3D cell with N vertices will have 2**N
   * cases. The returned case array lists three edges in order to produce one
   * output triangle which may be repeated to generate multiple triangles. The
   * list of cases terminates with a -1 entry.
   */
  static int* GetTriangleCases(int caseId);

  /**
   * Returns the set of points that are on the boundary of the tetrahedron that
   * are closest parametrically to the point specified. This may include faces,
   * edges, or vertices.
   */
  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;

  /**
   * Return the center of the tetrahedron in parametric coordinates.
   */
  int GetParametricCenter(double pcoords[3]) override;

  /**
   * Return the distance of the parametric coordinate provided to the
   * cell. If inside the cell, a distance of zero is returned.
   */
  double GetParametricDistance(const double pcoords[3]) override;

  /**
   * Compute the center of the tetrahedron,
   */
  static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);

  /**
   * Compute the circumcenter (center[3]) and radius squared (method
   * return value) of a tetrahedron defined by the four points x1, x2,
   * x3, and x4.
   */
  static double Circumsphere(
    double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);

  /**
   * Compute the center (center[3]) and radius (method return value) of
   * a sphere that just fits inside the faces of a tetrahedron defined
   * by the four points x1, x2, x3, and x4.
   */
  static double Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]);

  /**
   * Given a 3D point x[3], determine the barycentric coordinates of the point.
   * Barycentric coordinates are a natural coordinate system for simplices that
   * express a position as a linear combination of the vertices. For a
   * tetrahedron, there are four barycentric coordinates (because there are
   * four vertices), and the sum of the coordinates must equal 1. If a
   * point x is inside a simplex, then all four coordinates will be strictly
   * positive.  If three coordinates are zero (so the fourth =1), then the
   * point x is on a vertex. If two coordinates are zero, the point x is on an
   * edge (and so on). In this method, you must specify the vertex coordinates
   * x1->x4. Returns 0 if tetrahedron is degenerate.
   */
  static int BarycentricCoords(
    double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]);

  /**
   * Compute the volume of a tetrahedron defined by the four points
   * p1, p2, p3, and p4.
   */
  static double ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]);

  /**
   * Given parametric coordinates compute inverse Jacobian transformation
   * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
   * function derivatives. Returns 0 if no inverse exists.
   */
  int JacobianInverse(double** inverse, double derivs[12]);

  static void InterpolationFunctions(const double pcoords[3], double weights[4]);
  static void InterpolationDerivs(const double pcoords[3], double derivs[12]);
  //@{
  /**
   * Compute the interpolation functions/derivatives
   * (aka shape functions/derivatives)
   */
  void InterpolateFunctions(const double pcoords[3], double weights[4]) override
  {
    vtkTetra::InterpolationFunctions(pcoords, weights);
  }
  void InterpolateDerivs(const double pcoords[3], double derivs[12]) override
  {
    vtkTetra::InterpolationDerivs(pcoords, derivs);
  }
  //@}

  //@{
  /**
   * Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
   * Ids are related to the cell, not to the dataset.
   *
   * @note The return type changed. It used to be int*, it is now const vtkIdType*.
   * This is so ids are unified between vtkCell and vtkPoints, and so vtkCell ids
   * can be used as inputs in algorithms such as vtkPolygon::ComputeNormal.
   */
  static const vtkIdType* GetEdgeArray(vtkIdType edgeId) VTK_SIZEHINT(2);
  static const vtkIdType* GetFaceArray(vtkIdType faceId) VTK_SIZEHINT(3);
  //@}

  /**
   * Static method version of GetEdgeToAdjacentFaces.
   */
  static const vtkIdType* GetEdgeToAdjacentFacesArray(vtkIdType edgeId) VTK_SIZEHINT(2);

  /**
   * Static method version of GetFaceToAdjacentFaces.
   */
  static const vtkIdType* GetFaceToAdjacentFacesArray(vtkIdType faceId) VTK_SIZEHINT(3);

  /**
   * Static method version of GetPointToIncidentEdgesArray.
   */
  static const vtkIdType* GetPointToIncidentEdgesArray(vtkIdType pointId) VTK_SIZEHINT(3);

  /**
   * Static method version of GetPointToIncidentFacesArray.
   */
  static const vtkIdType* GetPointToIncidentFacesArray(vtkIdType pointId) VTK_SIZEHINT(3);

  /**
   * Static method version of GetPointToOneRingPoints.
   */
  static const vtkIdType* GetPointToOneRingPointsArray(vtkIdType pointId) VTK_SIZEHINT(3);

  /**
   * Static method version of GetCentroid.
   */
  static bool ComputeCentroid(vtkPoints* points, const vtkIdType* pointIds, double centroid[3]);

protected:
  vtkTetra();
  ~vtkTetra() override;

  vtkLine* Line;
  vtkTriangle* Triangle;

private:
  vtkTetra(const vtkTetra&) = delete;
  void operator=(const vtkTetra&) = delete;
};

inline int vtkTetra::GetParametricCenter(double pcoords[3])
{
  pcoords[0] = pcoords[1] = pcoords[2] = 0.25;
  return 0;
}

#endif