File: vtkKochanekSpline.cxx

package info (click to toggle)
vtk9 9.3.0%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 267,116 kB
  • sloc: cpp: 2,195,914; ansic: 285,452; python: 104,858; sh: 4,061; yacc: 4,035; java: 3,977; xml: 2,771; perl: 2,189; lex: 1,762; objc: 153; makefile: 150; javascript: 90; tcl: 59
file content (358 lines) | stat: -rw-r--r-- 10,227 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkKochanekSpline.h"

#include "vtkObjectFactory.h"
#include "vtkPiecewiseFunction.h"

#include <vector>

VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkKochanekSpline);

//------------------------------------------------------------------------------
// Construct a KochanekSpline with the following defaults:
// DefaultBias = 0,
// DefaultTension = 0,
// DefaultContinuity = 0.
vtkKochanekSpline::vtkKochanekSpline()
{
  this->DefaultBias = 0.0;
  this->DefaultTension = 0.0;
  this->DefaultContinuity = 0.0;
}

//------------------------------------------------------------------------------
// Evaluate a 1D Spline
double vtkKochanekSpline::Evaluate(double t)
{
  int index = 0;
  double* intervals;
  double* coefficients;

  // check to see if we need to recompute the spline
  if (this->ComputeTime < this->GetMTime())
  {
    this->Compute();
  }

  // make sure we have at least 2 points
  int size = this->PiecewiseFunction->GetSize();
  if (size < 2)
  {
    return 0.0;
  }

  intervals = this->Intervals;
  coefficients = this->Coefficients;

  if (this->Closed)
  {
    size = size + 1;
  }

  // clamp the function at both ends
  if (t < intervals[0])
  {
    t = intervals[0];
  }
  if (t > intervals[size - 1])
  {
    t = intervals[size - 1];
  }

  // find pointer to cubic spline coefficient
  index = this->FindIndex(size, t);

  // calculate offset within interval
  t = (t - intervals[index]) / (intervals[index + 1] - intervals[index]);

  // evaluate y
  return (t *
      (t * (t * *(coefficients + index * 4 + 3) + *(coefficients + index * 4 + 2)) +
        *(coefficients + index * 4 + 1)) +
    *(coefficients + index * 4));
}

//------------------------------------------------------------------------------
// Compute Kochanek Spline coefficients.
void vtkKochanekSpline::Compute()
{
  double *ts, *xs;
  double* coefficients;
  std::vector<double> dependent;
  int size;
  int i;

  // get the size of the independent variables
  size = this->PiecewiseFunction->GetSize();

  if (size < 2)
  {
    vtkErrorMacro("Spline requires at least 2 points. # of points is: " << size);
    return;
  }

  if (!this->Closed)
  {
    // copy the independent variables
    delete[] this->Intervals;
    this->Intervals = new double[size];
    ts = this->PiecewiseFunction->GetDataPointer();
    for (i = 0; i < size; i++)
    {
      this->Intervals[i] = *(ts + 2 * i);
    }

    // allocate memory for coefficients
    delete[] this->Coefficients;
    this->Coefficients = new double[4 * size];

    // allocate memory for dependent variables
    dependent.resize(size);

    // get start of coefficients for this dependent variable
    coefficients = this->Coefficients;

    // get the dependent variable values
    xs = this->PiecewiseFunction->GetDataPointer() + 1;
    for (int j = 0; j < size; j++)
    {
      dependent[j] = xs[2 * j];
    }
  }
  else // spline is closed, create extra "fictitious" point
  {
    size = size + 1;
    // copy the independent variables
    delete[] this->Intervals;
    this->Intervals = new double[size];
    ts = this->PiecewiseFunction->GetDataPointer();
    for (i = 0; i < size - 1; i++)
    {
      this->Intervals[i] = *(ts + 2 * i);
    }
    if (this->ParametricRange[0] != this->ParametricRange[1])
    {
      this->Intervals[size - 1] = this->ParametricRange[1];
    }
    else
    {
      this->Intervals[size - 1] = this->Intervals[size - 2] + 1.0;
    }

    // allocate memory for coefficients
    delete[] this->Coefficients;
    this->Coefficients = new double[4 * size];

    // allocate memory for dependent variables
    dependent.resize(size);

    // get start of coefficients for this dependent variable
    coefficients = this->Coefficients;

    // get the dependent variable values
    xs = this->PiecewiseFunction->GetDataPointer() + 1;
    for (int j = 0; j < size - 1; j++)
    {
      dependent[j] = xs[2 * j];
    }
    dependent[size - 1] = xs[0];
  }

  this->Fit1D(size, this->Intervals, dependent.data(), this->DefaultTension, this->DefaultBias,
    this->DefaultContinuity, (double(*)[4])coefficients, this->LeftConstraint, this->LeftValue,
    this->RightConstraint, this->RightValue);

  // update compute time
  this->ComputeTime = this->GetMTime();
}

#define VTK_EPSILON .0001

//------------------------------------------------------------------------------
// Compute the coefficients for a 1D spline
void vtkKochanekSpline::Fit1D(int size, double* x, double* y, double tension, double bias,
  double continuity, double coefficients[][4], int leftConstraint, double leftValue,
  int rightConstraint, double rightValue)
{
  double cs;     /* source chord                 */
  double cd;     /* destination chord            */
  double ds;     /* source deriviative           */
  double dd;     /* destination deriviative      */
  double n0, n1; /* number of frames btwn nodes  */
  int N;         /* top point number             */
  int i;

  N = size - 1;

  for (i = 1; i < N; i++)
  {
    cs = y[i] - y[i - 1];
    cd = y[i + 1] - y[i];

    ds = cs * ((1 - tension) * (1 - continuity) * (1 + bias)) / 2.0 +
      cd * ((1 - tension) * (1 + continuity) * (1 - bias)) / 2.0;

    dd = cs * ((1 - tension) * (1 + continuity) * (1 + bias)) / 2.0 +
      cd * ((1 - tension) * (1 - continuity) * (1 - bias)) / 2.0;

    // adjust deriviatives for non uniform spacing between nodes
    n1 = x[i + 1] - x[i];
    n0 = x[i] - x[i - 1];

    ds *= (2 * n0 / (n0 + n1));
    dd *= (2 * n1 / (n0 + n1));

    coefficients[i][0] = y[i];
    coefficients[i][1] = dd;
    coefficients[i][2] = ds;
  }

  // Calculate the deriviatives at the end points
  coefficients[0][0] = y[0];
  coefficients[N][0] = y[N];
  coefficients[N][1] = 0.0;
  coefficients[N][2] = 0.0;
  coefficients[N][3] = 0.0;

  if (this->Closed) // the curve is continuous and closed at P0=Pn
  {
    cs = y[N] - y[N - 1];
    cd = y[1] - y[0];

    ds = cs * ((1 - tension) * (1 - continuity) * (1 + bias)) / 2.0 +
      cd * ((1 - tension) * (1 + continuity) * (1 - bias)) / 2.0;

    dd = cs * ((1 - tension) * (1 + continuity) * (1 + bias)) / 2.0 +
      cd * ((1 - tension) * (1 - continuity) * (1 - bias)) / 2.0;

    // adjust deriviatives for non uniform spacing between nodes
    n1 = x[1] - x[0];
    n0 = x[N] - x[N - 1];
    ds *= (2 * n0 / (n0 + n1));
    dd *= (2 * n1 / (n0 + n1));

    coefficients[0][1] = dd;
    coefficients[0][2] = ds;
    coefficients[N][1] = dd;
    coefficients[N][2] = ds;
  }
  else // curve is open
  {
    switch (leftConstraint)
    {
      case 0:
        // desired slope at leftmost point is leftValue
        coefficients[0][1] = this->ComputeLeftDerivative();
        break;

      case 1:
        // desired slope at leftmost point is leftValue
        coefficients[0][1] = leftValue;
        break;

      case 2:
        // desired second derivative at leftmost point is leftValue
        coefficients[0][1] = (6 * (y[1] - y[0]) - 2 * coefficients[1][2] - leftValue) / 4.0;
        break;

      case 3:
        // desired second derivative at leftmost point is leftValue
        // times second derivative at first interior point
        if ((leftValue > (-2.0 + VTK_EPSILON)) || (leftValue < (-2.0 - VTK_EPSILON)))
        {
          coefficients[0][1] =
            (3 * (1 + leftValue) * (y[1] - y[0]) - (1 + 2 * leftValue) * coefficients[1][2]) /
            (2 + leftValue);
        }
        else
        {
          coefficients[0][1] = 0.0;
        }
        break;
    }

    switch (rightConstraint)
    {
      case 0:
        // desired slope at rightmost point is rightValue
        coefficients[N][2] = this->ComputeRightDerivative();
        break;

      case 1:
        // desired slope at rightmost point is rightValue
        coefficients[N][2] = rightValue;
        break;

      case 2:
        // desired second derivative at rightmost point is rightValue
        coefficients[N][2] =
          (6 * (y[N] - y[N - 1]) - 2 * coefficients[N - 1][1] + rightValue) / 4.0;
        break;

      case 3:
        // desired second derivative at rightmost point is rightValue
        // times second derivative at last interior point
        if ((rightValue > (-2.0 + VTK_EPSILON)) || (rightValue < (-2.0 - VTK_EPSILON)))
        {
          coefficients[N][2] = (3 * (1 + rightValue) * (y[N] - y[N - 1]) -
                                 (1 + 2 * rightValue) * coefficients[N - 1][1]) /
            (2 + rightValue);
        }
        else
        {
          coefficients[N][2] = 0.0;
        }
        break;
    }
  } // curve is open

  // Compute the Coefficients
  for (i = 0; i < N; i++)
  {
    //
    // c0    = P ;    c1    = DD ;
    //   i      i       i       i
    //
    // c1    = P   ;  c2    = DS   ;
    //   i+1    i+1     i+1     i+1
    //
    // c2  = -3P  + 3P    - 2DD  - DS   ;
    //   i      i     i+1      i     i+1
    //
    // c3  =  2P  - 2P    +  DD  + DS   ;
    //   i      i     i+1      i     i+1
    //
    coefficients[i][2] =
      (-3 * y[i]) + (3 * y[i + 1]) + (-2 * coefficients[i][1]) + (-1 * coefficients[i + 1][2]);
    coefficients[i][3] =
      (2 * y[i]) + (-2 * y[i + 1]) + (1 * coefficients[i][1]) + (1 * coefficients[i + 1][2]);
  }
}

//------------------------------------------------------------------------------
void vtkKochanekSpline::DeepCopy(vtkSpline* s)
{
  vtkKochanekSpline* spline = vtkKochanekSpline::SafeDownCast(s);

  if (spline != nullptr)
  {
    this->DefaultBias = spline->DefaultBias;
    this->DefaultTension = spline->DefaultTension;
    this->DefaultContinuity = spline->DefaultContinuity;
  }

  // Now do superclass
  this->vtkSpline::DeepCopy(s);
}

//------------------------------------------------------------------------------
void vtkKochanekSpline::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
  os << indent << "DefaultBias: " << this->DefaultBias << "\n";
  os << indent << "DefaultTension: " << this->DefaultTension << "\n";
  os << indent << "DefaultContinuity: " << this->DefaultContinuity << "\n";
}
VTK_ABI_NAMESPACE_END