1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkParametricCrossCap.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkParametricCrossCap);
//------------------------------------------------------------------------------
vtkParametricCrossCap::vtkParametricCrossCap()
{
// Preset triangulation parameters
this->MinimumU = 0;
this->MaximumU = vtkMath::Pi();
this->MinimumV = 0;
this->MaximumV = vtkMath::Pi();
this->JoinU = 1;
this->JoinV = 1;
this->TwistU = 1;
this->TwistV = 1;
this->ClockwiseOrdering = 0;
this->DerivativesAvailable = 1;
}
//------------------------------------------------------------------------------
vtkParametricCrossCap::~vtkParametricCrossCap() = default;
//------------------------------------------------------------------------------
void vtkParametricCrossCap::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = uvw[0];
double v = uvw[1];
double* Du = Duvw;
double* Dv = Duvw + 3;
double cu = cos(u);
double su = sin(u);
double cv = cos(v);
double c2v = cos(2 * v);
double sv = sin(v);
double s2v = sin(2 * v);
// The point
Pt[0] = cu * s2v;
Pt[1] = su * s2v;
Pt[2] = cv * cv - cu * cu * sv * sv;
// The derivatives are:
Du[0] = -Pt[1];
Du[1] = Pt[0];
Du[2] = 2 * cu * su * sv * sv;
Dv[0] = 2 * cu * c2v;
Dv[1] = 2 * su * c2v;
Dv[2] = -2 * cv * sv * (1 + cu * cu);
}
//------------------------------------------------------------------------------
double vtkParametricCrossCap::EvaluateScalar(double*, double*, double*)
{
return 0;
}
//------------------------------------------------------------------------------
void vtkParametricCrossCap::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
}
VTK_ABI_NAMESPACE_END
|