File: vtkParametricKlein.h

package info (click to toggle)
vtk9 9.3.0%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 267,116 kB
  • sloc: cpp: 2,195,914; ansic: 285,452; python: 104,858; sh: 4,061; yacc: 4,035; java: 3,977; xml: 2,771; perl: 2,189; lex: 1,762; objc: 153; makefile: 150; javascript: 90; tcl: 59
file content (92 lines) | stat: -rw-r--r-- 3,154 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
 * @class   vtkParametricKlein
 * @brief   Generates a "classical" representation of a Klein bottle.
 *
 * vtkParametricKlein generates a "classical" representation of a Klein
 * bottle.  A Klein bottle is a closed surface with no interior and only one
 * surface.  It is unrealisable in 3 dimensions without intersecting
 * surfaces.  It can be
 * realised in 4 dimensions by considering the map \f$F:R^2 \rightarrow R^4\f$  given by:
 *
 * - \f$f(u,v) = ((r*cos(v)+a)*cos(u),(r*cos(v)+a)*sin(u),r*sin(v)*cos(u/2),r*sin(v)*sin(u/2))\f$
 *
 * The classical representation of the immersion in \f$R^3\f$ is returned by this function.
 *
 *
 * For further information about this surface, please consult the
 * technical description "Parametric surfaces" in http://www.vtk.org/publications
 * in the "VTK Technical Documents" section in the VTk.org web pages.
 *
 * @par Thanks:
 * Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the
 * class.
 *
 */

#ifndef vtkParametricKlein_h
#define vtkParametricKlein_h

#include "vtkCommonComputationalGeometryModule.h" // For export macro
#include "vtkParametricFunction.h"

VTK_ABI_NAMESPACE_BEGIN
class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricKlein : public vtkParametricFunction
{
public:
  vtkTypeMacro(vtkParametricKlein, vtkParametricFunction);
  void PrintSelf(ostream& os, vtkIndent indent) override;

  /**
   * Construct a Klein Bottle with the following parameters:
   * MinimumU = 0, MaximumU = 2*Pi,
   * MinimumV = -Pi, MaximumV = Pi,
   * JoinU = 0, JoinV = 1,
   * TwistU = 0, TwistV = 0,
   * ClockwiseOrdering = 0,
   * DerivativesAvailable = 1,
   */
  static vtkParametricKlein* New(); //! Initialise the parameters for the Klein bottle

  /**
   * Return the parametric dimension of the class.
   */
  int GetDimension() override { return 2; }

  /**
   * A Klein bottle.

   * This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
   * as Pt. It also returns the partial derivatives Du and Dv.
   * \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
   * Then the normal is \f$N = Du X Dv\f$ .
   */
  void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override;

  /**
   * Calculate a user defined scalar using one or all of uvw, Pt, Duvw.

   * uvw are the parameters with Pt being the cartesian point,
   * Duvw are the derivatives of this point with respect to u, v and w.
   * Pt, Duvw are obtained from Evaluate().

   * This function is only called if the ScalarMode has the value
   * vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED

   * If the user does not need to calculate a scalar, then the
   * instantiated function should return zero.
   */
  double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override;

protected:
  vtkParametricKlein();
  ~vtkParametricKlein() override;

private:
  vtkParametricKlein(const vtkParametricKlein&) = delete;
  void operator=(const vtkParametricKlein&) = delete;
};

VTK_ABI_NAMESPACE_END
#endif