1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkParametricMobius.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkParametricMobius);
//------------------------------------------------------------------------------
vtkParametricMobius::vtkParametricMobius()
{
this->MinimumU = 0;
this->MaximumU = 2 * vtkMath::Pi();
this->MinimumV = -1;
this->MaximumV = 1;
this->JoinU = 1;
this->JoinV = 0;
this->TwistU = 1;
this->TwistV = 0;
this->ClockwiseOrdering = 0;
this->DerivativesAvailable = 1;
this->Radius = 1;
}
//------------------------------------------------------------------------------
vtkParametricMobius::~vtkParametricMobius() = default;
//------------------------------------------------------------------------------
void vtkParametricMobius::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
double u = uvw[0];
double v = uvw[1];
double* Du = Duvw;
double* Dv = Duvw + 3;
double cu = cos(u);
double cu2 = cos(u / 2);
double su = sin(u);
double su2 = sin(u / 2);
double t = this->Radius - v * su2;
// The point
Pt[0] = t * su;
Pt[1] = t * cu;
Pt[2] = v * cu2;
// The derivatives are:
Du[0] = -v * cu2 * su / 2 + Pt[1];
Du[1] = -v * cu2 * cu / 2 - Pt[0];
Du[2] = -v * su2 / 2;
Dv[0] = -su2 * su;
Dv[1] = -su2 * cu;
Dv[2] = cu2;
}
//------------------------------------------------------------------------------
double vtkParametricMobius::EvaluateScalar(double*, double*, double*)
{
return 0;
}
//------------------------------------------------------------------------------
void vtkParametricMobius::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Radius: " << this->Radius << "\n";
}
VTK_ABI_NAMESPACE_END
|