1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkParametricRoman
* @brief Generate Steiner's Roman Surface.
*
* vtkParametricRoman generates Steiner's Roman Surface.
*
* For further information about this surface, please consult the
* technical description "Parametric surfaces" in http://www.vtk.org/publications
* in the "VTK Technical Documents" section in the VTk.org web pages.
*
* @par Thanks:
* Andrew Maclean andrew.amaclean@gmail.com for creating and contributing the
* class.
*
*/
#ifndef vtkParametricRoman_h
#define vtkParametricRoman_h
#include "vtkCommonComputationalGeometryModule.h" // For export macro
#include "vtkParametricFunction.h"
VTK_ABI_NAMESPACE_BEGIN
class VTKCOMMONCOMPUTATIONALGEOMETRY_EXPORT vtkParametricRoman : public vtkParametricFunction
{
public:
vtkTypeMacro(vtkParametricRoman, vtkParametricFunction);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Return the parametric dimension of the class.
*/
int GetDimension() override { return 2; }
/**
* Construct Steiner's Roman Surface with the following parameters:
* MinimumU = 0, MaximumU = Pi,
* MinimumV = 0, MaximumV = Pi,
* JoinU = 1, JoinV = 1,
* TwistU = 1, TwistV = 0;
* ClockwiseOrdering = 0,
* DerivativesAvailable = 1,
* Radius = 1
*/
static vtkParametricRoman* New();
///@{
/**
* Set/Get the radius. Default is 1.
*/
vtkSetMacro(Radius, double);
vtkGetMacro(Radius, double);
///@}
/**
* Steiner's Roman Surface
* This function performs the mapping \f$f(u,v) \rightarrow (x,y,x)\f$, returning it
* as Pt. It also returns the partial derivatives Du and Dv.
* \f$Pt = (x, y, z), Du = (dx/du, dy/du, dz/du), Dv = (dx/dv, dy/dv, dz/dv)\f$ .
* Then the normal is \f$N = Du X Dv\f$ .
*/
void Evaluate(double uvw[3], double Pt[3], double Duvw[9]) override;
/**
* Calculate a user defined scalar using one or all of uvw, Pt, Duvw.
* uvw are the parameters with Pt being the Cartesian point,
* Duvw are the derivatives of this point with respect to u, v and w.
* Pt, Duvw are obtained from Evaluate().
* This function is only called if the ScalarMode has the value
* vtkParametricFunctionSource::SCALAR_FUNCTION_DEFINED
* If the user does not need to calculate a scalar, then the
* instantiated function should return zero.
*/
double EvaluateScalar(double uvw[3], double Pt[3], double Duvw[9]) override;
protected:
vtkParametricRoman();
~vtkParametricRoman() override;
// Variables
double Radius;
private:
vtkParametricRoman(const vtkParametricRoman&) = delete;
void operator=(const vtkParametricRoman&) = delete;
};
VTK_ABI_NAMESPACE_END
#endif
|