1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkCoordinateFrame.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkVector.h"
#include "vtkVectorOperators.h"
#include <cmath>
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkCoordinateFrame);
double vtkCoordinateFrame::EvaluateFunction(double x[3])
{
using std::signbit;
using std::sqrt;
double val = 0.;
// dw is a vector in world coordinates from the coordinate frame's origin to x.
vtkVector3d dw(x[0] - this->Origin[0], x[1] - this->Origin[1], x[2] - this->Origin[2]);
vtkVector3d ax(this->XAxis);
vtkVector3d ay(this->YAxis);
vtkVector3d az(this->ZAxis);
// Transform dw into the coordinate-frame's basis:
double xx = dw.Dot(ax);
double yy = dw.Dot(ay);
double zz = dw.Dot(az);
// Compute squares of each coordinate and squared-radius from origin.
double x2 = xx * xx;
double y2 = yy * yy;
double z2 = zz * zz;
double r2 = x2 + y2 + z2;
// Evaluate 2 relevant quartic spherical harmonic basis functions, Y_4,0 and Y_4,4:
constexpr double c40 = 0.10578554691520431; // = 3/16.0 * std::sqrt(1. / vtkMath::Pi());
constexpr double c44 = 0.62583573544917614; // = 3/16.0 * std::sqrt(35. / vtkMath::Pi());
double Y40 = c40 * (35 * z2 * z2 - 30 * z2 * r2 + 3 * r2 * r2) / r2 / r2;
double Y44 = c44 * (x2 * (x2 - 3 * y2) - y2 * (3 * x2 - y2)) / r2 / r2;
// Combine the basis functions to get our coordinate-frame function:
constexpr double w40 = 0.76376261582597338; // = std::sqrt(7./12.);
constexpr double w44 = 0.64549722436790280; // = std::sqrt(5./12.);
val = w40 * Y40 + w44 * Y44;
return val;
}
// Evaluate planes gradient.
void vtkCoordinateFrame::EvaluateGradient(double x[3], double n[3])
{
// Approximate derivate. TODO: Compute analytic gradient.
vtkVector3d pp(x[0], x[1], x[2]);
double fxyz = this->EvaluateFunction(pp.GetData());
double fxdx = this->EvaluateFunction((pp + 1e-6 * vtkVector3d(1, 0, 0)).GetData());
double fydy = this->EvaluateFunction((pp + 1e-6 * vtkVector3d(0, 1, 0)).GetData());
double fzdz = this->EvaluateFunction((pp + 1e-6 * vtkVector3d(0, 0, 1)).GetData());
// vtkVector3d grad((fxdx - fxyz)/1e-6, (fydy - fxyz)/1e-6, (fzdz - fxyz)/1e-6);
n[0] = (fxdx - fxyz) / 1e-6;
n[1] = (fydy - fxyz) / 1e-6;
n[2] = (fzdz - fxyz) / 1e-6;
}
void vtkCoordinateFrame::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Origin: " << this->Origin[0] << " " << this->Origin[1] << " " << this->Origin[2]
<< "\n";
os << indent << "XAxis: " << this->XAxis[0] << " " << this->XAxis[1] << " " << this->XAxis[2]
<< "\n";
os << indent << "YAxis: " << this->YAxis[0] << " " << this->YAxis[1] << " " << this->YAxis[2]
<< "\n";
os << indent << "ZAxis: " << this->ZAxis[0] << " " << this->ZAxis[1] << " " << this->ZAxis[2]
<< "\n";
}
VTK_ABI_NAMESPACE_END
|