1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkMatrix3x3
* @brief represent and manipulate 3x3 transformation matrices
*
* vtkMatrix3x3 is a class to represent and manipulate 3x3 matrices.
* Specifically, it is designed to work on 3x3 transformation matrices
* found in 2D rendering using homogeneous coordinates [x y w].
*
* @sa
* vtkTransform2D
*/
#ifndef vtkMatrix3x3_h
#define vtkMatrix3x3_h
#include "vtkCommonMathModule.h" // For export macro
#include "vtkObject.h"
VTK_ABI_NAMESPACE_BEGIN
class VTKCOMMONMATH_EXPORT vtkMatrix3x3 : public vtkObject
{
// Some of the methods in here have a corresponding static (class)
// method taking a pointer to 9 doubles that constitutes a user
// supplied matrix. This allows C++ clients to allocate double arrays
// on the stack and manipulate them using vtkMatrix3x3 methods.
// This is an alternative to allowing vtkMatrix3x3 instances to be
// created on the stack (which is frowned upon) or doing lots of
// temporary heap allocation within vtkTransform2D methods,
// which is inefficient.
public:
/**
* Construct a 3x3 identity matrix.
*/
static vtkMatrix3x3* New();
vtkTypeMacro(vtkMatrix3x3, vtkObject);
void PrintSelf(ostream& os, vtkIndent indent) override;
/**
* Set the elements of the matrix to the same values as the elements
* of the source Matrix.
*/
void DeepCopy(vtkMatrix3x3* source)
{
vtkMatrix3x3::DeepCopy(*this->Element, source);
this->Modified();
}
static void DeepCopy(double elements[9], vtkMatrix3x3* source)
{
vtkMatrix3x3::DeepCopy(elements, *source->Element);
}
static void DeepCopy(double elements[9], const double newElements[9]);
/**
* Non-static member function. Assigns *from* elements array
*/
void DeepCopy(const double elements[9])
{
vtkMatrix3x3::DeepCopy(*this->Element, elements);
this->Modified();
}
/**
* Set all of the elements to zero.
*/
void Zero()
{
vtkMatrix3x3::Zero(*this->Element);
this->Modified();
}
static void Zero(double elements[9]);
/**
* Set equal to Identity matrix
*/
void Identity()
{
vtkMatrix3x3::Identity(*this->Element);
this->Modified();
}
static void Identity(double elements[9]);
/**
* Matrix Inversion (adapted from Richard Carling in "Graphics Gems,"
* Academic Press, 1990).
*/
static void Invert(vtkMatrix3x3* in, vtkMatrix3x3* out)
{
vtkMatrix3x3::Invert(*in->Element, *out->Element);
out->Modified();
}
void Invert() { vtkMatrix3x3::Invert(this, this); }
static void Invert(const double inElements[9], double outElements[9]);
/**
* Transpose the matrix and put it into out.
*/
static void Transpose(vtkMatrix3x3* in, vtkMatrix3x3* out)
{
vtkMatrix3x3::Transpose(*in->Element, *out->Element);
out->Modified();
}
void Transpose() { vtkMatrix3x3::Transpose(this, this); }
static void Transpose(const double inElements[9], double outElements[9]);
/**
* Multiply a homogeneous coordinate by this matrix, i.e. out = A*in.
* The in[3] and out[3] can be the same array.
*/
void MultiplyPoint(const float in[3], float out[3])
{
vtkMatrix3x3::MultiplyPoint(*this->Element, in, out);
}
void MultiplyPoint(const double in[3], double out[3])
{
vtkMatrix3x3::MultiplyPoint(*this->Element, in, out);
}
static void MultiplyPoint(const double elements[9], const float in[3], float out[3]);
static void MultiplyPoint(const double elements[9], const double in[3], double out[3]);
/**
* Multiplies matrices a and b and stores the result in c (c=a*b).
*/
static void Multiply3x3(vtkMatrix3x3* a, vtkMatrix3x3* b, vtkMatrix3x3* c)
{
vtkMatrix3x3::Multiply3x3(*a->Element, *b->Element, *c->Element);
}
static void Multiply3x3(const double a[9], const double b[9], double c[9]);
/**
* Compute adjoint of the matrix and put it into out.
*/
void Adjoint(vtkMatrix3x3* in, vtkMatrix3x3* out)
{
vtkMatrix3x3::Adjoint(*in->Element, *out->Element);
}
static void Adjoint(const double inElements[9], double outElements[9]);
/**
* Compute the determinant of the matrix and return it.
*/
double Determinant() { return vtkMatrix3x3::Determinant(*this->Element); }
static double Determinant(const double elements[9]);
/**
* Sets the element i,j in the matrix.
*/
void SetElement(int i, int j, double value);
/**
* Returns the element i,j from the matrix.
*/
double GetElement(int i, int j) const { return this->Element[i][j]; }
// Descption:
// Returns true if this matrix is equal to the identity matrix.
bool IsIdentity();
/**
* Return a pointer to the first element of the matrix (double[9]).
*/
double* GetData() VTK_SIZEHINT(9) { return *this->Element; }
/**
* Return a pointer to the first element of the matrix (double[9]).
*/
const double* GetData() const { return *this->Element; }
protected:
vtkMatrix3x3();
~vtkMatrix3x3() override;
double Element[3][3]; // The elements of the 3x3 matrix
private:
vtkMatrix3x3(const vtkMatrix3x3&) = delete;
void operator=(const vtkMatrix3x3&) = delete;
};
inline void vtkMatrix3x3::SetElement(int i, int j, double value)
{
if (this->Element[i][j] != value)
{
this->Element[i][j] = value;
this->Modified();
}
}
inline bool vtkMatrix3x3::IsIdentity()
{
double* M = *this->Element;
if (M[0] == 1.0 && M[4] == 1.0 && M[8] == 1.0 && M[1] == 0.0 && M[2] == 0.0 && M[3] == 0.0 &&
M[5] == 0.0 && M[6] == 0.0 && M[7] == 0.0)
{
return true;
}
else
{
return false;
}
}
VTK_ABI_NAMESPACE_END
#endif
|