1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkThreadedCallbackQueue.h"
#include "vtkObjectFactory.h"
#include <algorithm>
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkThreadedCallbackQueue);
//=============================================================================
class vtkThreadedCallbackQueue::ThreadWorker
{
public:
ThreadWorker(vtkThreadedCallbackQueue* queue, std::shared_ptr<std::atomic_int>& threadIndex)
: Queue(queue)
, ThreadIndex(threadIndex)
{
}
ThreadWorker(ThreadWorker&& other) noexcept
: Queue(other.Queue)
, ThreadIndex(std::move(other.ThreadIndex))
{
}
void operator()()
{
while (this->Pop())
{
}
std::lock_guard<std::mutex> lock(this->Queue->ControlMutex);
this->Queue->ThreadIdToIndex.erase(std::this_thread::get_id());
}
private:
/**
* Pops an invoker from the queue and runs it if the queue is running and if the thread
* is in service (meaning its thread id is still higher than Queue->NumberOfThreads).
* It returns true if the queue has been able to be popped and false otherwise.
*/
bool Pop()
{
std::unique_lock<std::mutex> lock(this->Queue->Mutex);
if (this->OnHold())
{
this->Queue->ConditionVariable.wait(lock, [this] { return !this->OnHold(); });
}
// Note that if the queue is empty at this point, it means that either the current thread id
// is now out of bound, or the queue is being destroyed.
if (!this->Continue())
{
return false;
}
auto& invokerQueue = this->Queue->InvokerQueue;
SharedFutureBasePointer invoker = std::move(invokerQueue.front());
invokerQueue.pop_front();
this->Queue->PopFrontNullptr();
lock.unlock();
std::unique_lock<std::mutex> stateLock(invoker->Mutex);
this->Queue->Invoke(std::move(invoker), stateLock);
return true;
}
/**
* Thread is on hold if its thread id is not out of bounds, while the queue is not calling
* its destructor, while the queue is running, while the queue is empty.
*/
bool OnHold() const
{
return *this->ThreadIndex < this->Queue->NumberOfThreads && !this->Queue->Destroying &&
this->Queue->InvokerQueue.empty();
}
/**
* We can continue popping elements if the thread id is not out of bounds while
* the queue is running and the queue is not empty.
*/
bool Continue() const
{
return *this->ThreadIndex < this->Queue->NumberOfThreads && !this->Queue->InvokerQueue.empty();
}
vtkThreadedCallbackQueue* Queue;
std::shared_ptr<std::atomic_int> ThreadIndex;
};
//-----------------------------------------------------------------------------
vtkThreadedCallbackQueue::vtkThreadedCallbackQueue()
{
this->SetNumberOfThreads(1);
}
//-----------------------------------------------------------------------------
vtkThreadedCallbackQueue::~vtkThreadedCallbackQueue()
{
{
std::lock_guard<std::mutex> destroyLock(this->DestroyMutex);
{
std::lock_guard<std::mutex> lock(this->Mutex);
this->Destroying = true;
}
}
this->ConditionVariable.notify_all();
this->Sync();
}
//-----------------------------------------------------------------------------
void vtkThreadedCallbackQueue::SetNumberOfThreads(int numberOfThreads)
{
this->PushControl([this, numberOfThreads]() {
int size = static_cast<int>(this->Threads.size());
std::lock_guard<std::mutex> destroyLock(this->DestroyMutex);
if (this->Destroying)
{
return;
}
if (size == numberOfThreads)
{
// Nothing to do
return;
}
// If we are expanding the number of threads, then we just need to spawn
// the missing threads.
else if (size < numberOfThreads)
{
this->NumberOfThreads = numberOfThreads;
std::generate_n(std::back_inserter(this->Threads), numberOfThreads - size, [this] {
auto threadIndex =
std::make_shared<std::atomic_int>(static_cast<int>(this->Threads.size()));
auto thread = std::thread(ThreadWorker(this, threadIndex));
{
std::lock_guard<std::mutex> threadIdLock(this->ThreadIdToIndexMutex);
this->ThreadIdToIndex.emplace(thread.get_id(), threadIndex);
}
return thread;
});
}
// If we are shrinking the number of threads, let's notify all threads
// so the threads whose id is more than the updated NumberOfThreads terminate.
else
{
// If we have a thread index larger than the new number of threads, we swap ourself with
// thread 0. We now know we will live after this routine and can synchronize terminating
// threads ourselves.
{
std::unique_lock<std::mutex> lock(this->ThreadIdToIndexMutex);
std::atomic_int& threadIndex = *this->ThreadIdToIndex.at(std::this_thread::get_id());
if (threadIndex && threadIndex >= numberOfThreads)
{
std::atomic_int& thread0Index = *this->ThreadIdToIndex.at(this->Threads[0].get_id());
lock.unlock();
std::swap(this->Threads[threadIndex], this->Threads[0]);
// Swapping the value of atomic ThreadIndex inside ThreadWorker.
int tmp = thread0Index;
thread0Index.exchange(threadIndex);
threadIndex = tmp;
}
}
this->NumberOfThreads = numberOfThreads;
this->ConditionVariable.notify_all();
this->Sync(this->NumberOfThreads);
// Excess threads are done, we can resize
this->Threads.resize(numberOfThreads);
}
});
}
//-----------------------------------------------------------------------------
void vtkThreadedCallbackQueue::Sync(int startId)
{
std::for_each(this->Threads.begin() + startId, this->Threads.end(),
[](std::thread& thread) { thread.join(); });
}
//-----------------------------------------------------------------------------
void vtkThreadedCallbackQueue::PopFrontNullptr()
{
while (!this->InvokerQueue.empty() && !this->InvokerQueue.front())
{
this->InvokerQueue.pop_front();
}
}
//-----------------------------------------------------------------------------
void vtkThreadedCallbackQueue::Invoke(
vtkSharedFutureBase* invoker, std::unique_lock<std::mutex>& lock)
{
invoker->Status = RUNNING;
lock.unlock();
(*invoker)();
this->SignalDependentSharedFutures(invoker);
}
//-----------------------------------------------------------------------------
void vtkThreadedCallbackQueue::SignalDependentSharedFutures(vtkSharedFutureBase* invoker)
{
// We put invokers to launch in a separate container so we can separate the usage of mutexes as
// much as possible
std::vector<SharedFutureBasePointer> invokersToLaunch;
{
// We are iterating on our dependents, which mean we cannot let any dependent add themselves to
// this container. At this point we're "ready" anyway so no dependents should be waiting in most
// cases.
std::lock_guard<std::mutex> lock(invoker->Mutex);
for (auto& dependent : invoker->Dependents)
{
// We're locking the dependent future. When the lock is released, either the future is not
// done constructing and we have nothing to do, we can let it run itself, or the future is
// done constructing, in which case if we hit zero prior futures remaining, we've gotta move
// its associated invoker in the running queue.
std::unique_lock<std::mutex> dependentLock(dependent->Mutex);
--dependent->NumberOfPriorSharedFuturesRemaining;
if (dependent->Status == ON_HOLD && !dependent->NumberOfPriorSharedFuturesRemaining)
{
// Invoker is high priority if it comes from vtkThreadedCallbackQueue::Wait for example.
if (dependent->IsHighPriority)
{
this->Invoke(dependent, dependentLock);
}
else
{
// We can unlock at this point, we don't touch the future anymore
dependentLock.unlock();
invokersToLaunch.emplace_back(std::move(dependent));
}
}
}
}
if (!invokersToLaunch.empty())
{
std::lock_guard<std::mutex> lock(this->Mutex);
// We need to handle the invoker index.
// If the InvokerQueue is empty, then we set it such that after this look, the front has index
// 0.
std::size_t index = this->InvokerQueue.empty() ? invokersToLaunch.size()
: this->InvokerQueue.front()->InvokerIndex;
for (SharedFutureBasePointer& inv : invokersToLaunch)
{
assert(inv->Status == ON_HOLD && "Status should be ON_HOLD");
inv->InvokerIndex = --index;
std::lock_guard<std::mutex> stateLock(inv->Mutex);
inv->Status = ENQUEUED;
// This dependent has been waiting enough, let's give him some priority.
// Anyway, the invoker is past due if it was put inside InvokersOnHold.
this->InvokerQueue.emplace_front(std::move(inv));
}
}
for (std::size_t i = 0; i < invokersToLaunch.size(); ++i)
{
this->ConditionVariable.notify_one();
}
}
//-----------------------------------------------------------------------------
bool vtkThreadedCallbackQueue::TryInvoke(vtkSharedFutureBase* invoker)
{
std::unique_lock<std::mutex> invokerLock(invoker->Mutex);
if (![this, &invoker] {
// We need to check again if we cannot run in case the thread worker just popped this
// invoker. We are guarded by this->Mutex so there cannot be a conflict here.
if (invoker->Status != ENQUEUED)
{
// Someone picked up the invoker right before us, we can abort.
return SharedFutureBasePointer(nullptr);
}
std::lock_guard<std::mutex> lock(this->Mutex);
if (this->InvokerQueue.empty())
{
return SharedFutureBasePointer(nullptr);
}
// There has to be a front if we are here.
vtkIdType index = invoker->InvokerIndex - this->InvokerQueue.front()->InvokerIndex;
SharedFutureBasePointer result = std::move(this->InvokerQueue[index]);
// If we just picked the front invoker, let's pop the queue.
if (index == 0)
{
this->InvokerQueue.pop_front();
this->PopFrontNullptr();
}
return result;
}())
{
return false;
}
this->Invoke(invoker, invokerLock);
return true;
}
//-----------------------------------------------------------------------------
void vtkThreadedCallbackQueue::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
std::lock_guard<std::mutex> lock1(this->Mutex);
os << indent << "Threads: " << this->NumberOfThreads << std::endl;
os << indent << "Callback queue size: " << this->InvokerQueue.size() << std::endl;
}
VTK_ABI_NAMESPACE_END
|