1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkThreadedCallbackQueue
* @brief simple threaded callback queue
*
* This callback queue executes pushed functions and functors on threads whose
* purpose is to execute those functions.
* By default, one thread is created by this class, so it is advised to set `NumberOfThreads`.
* Upon destruction of an instance of this callback queue, remaining unexecuted threads are
* executed.
*
* When a task is pushed, a `vtkSharedFuture` is returned. This instance can be used to get the
* returned value when the task is finished, and provides functionalities to synchronize the main
* thread with the status of its associated task.
*
* All public methods of this class are thread safe.
*/
#ifndef vtkThreadedCallbackQueue_h
#define vtkThreadedCallbackQueue_h
#include "vtkObject.h"
#include "vtkParallelCoreModule.h" // For export macro
#include "vtkSmartPointer.h" // For vtkSmartPointer
#include <atomic> // For atomic_bool
#include <condition_variable> // For condition variable
#include <deque> // For deque
#include <functional> // For greater
#include <memory> // For unique_ptr
#include <mutex> // For mutex
#include <thread> // For thread
#include <unordered_map> // For unordered_map
#include <unordered_set> // For unordered_set
#include <vector> // For vector
#if !defined(__WRAP__)
VTK_ABI_NAMESPACE_BEGIN
class VTKPARALLELCORE_EXPORT vtkThreadedCallbackQueue : public vtkObject
{
private:
/**
* Helper to extract the parameter types of a function (passed by template)
*/
template <class FT>
struct Signature;
/**
* Helper that dereferences the input type `T`. If `T == Object`, or
* `T == Object*` or `T == std::unique_ptr<Object>`, then `Type` is of type `Object`.
*/
template <class T, class DummyT = std::nullptr_t>
struct Dereference
{
struct Type;
};
/**
* Convenient typedef to help lighten the code.
*/
template <class T>
using DereferencedType = typename std::decay<typename Dereference<T>::Type>::type;
/**
* This resolves to the return type of the template function `FT`.
*/
template <class FT>
using InvokeResult = typename Signature<DereferencedType<FT>>::InvokeResult;
/**
* This class wraps the returned value and gives access to it.
*/
template <class ReturnT, bool IsLValueReference = std::is_lvalue_reference<ReturnT>::value>
class ReturnValueWrapper
{
class ReturnLValueRef;
class ReturnConstLValueRef;
};
public:
static vtkThreadedCallbackQueue* New();
vtkTypeMacro(vtkThreadedCallbackQueue, vtkObject);
void PrintSelf(ostream& os, vtkIndent indent) override;
vtkThreadedCallbackQueue();
/**
* Any remaining function that was not executed yet will be executed in this destructor.
*/
~vtkThreadedCallbackQueue() override;
/**
* `vtkSharedFutureBase` is the base block to store, run, get the returned value of the tasks that
* are pushed in the queue.
*/
class vtkSharedFutureBase : public vtkObjectBase
{
public:
vtkBaseTypeMacro(vtkSharedFutureBase, vtkObjectBase);
vtkSharedFutureBase()
: NumberOfPriorSharedFuturesRemaining(0)
, Status(CONSTRUCTING)
{
}
/**
* Blocks current thread until the task associated with this future has terminated.
*/
virtual void Wait() const
{
if (this->Status == READY)
{
return;
}
std::unique_lock<std::mutex> lock(this->Mutex);
if (this->Status != READY)
{
this->ConditionVariable.wait(lock, [this] { return this->Status == READY; });
}
}
friend class vtkThreadedCallbackQueue;
private:
/**
* This runs the stored task.
*/
virtual void operator()() = 0;
/**
* Number of futures that need to terminate before we can run.
*/
std::atomic_int NumberOfPriorSharedFuturesRemaining;
/**
* Exclusive binary mask giving the status of the current invoker sharing this state.
* Status can be READY, RUNNING, ON_HOLD, CONSTRUCTING, ENQUEUED.
* See vtkThreadedCallbackQueue::Status for more detail.
*/
std::atomic_int Status;
/**
* Index that is set by the invoker to this shared state.
* The position of this invoker in the InvokerQueue can be found by subtracting this
* InvokerIndex with the one of the front invoker.
*/
vtkIdType InvokerIndex;
/**
* When set to true, when this invoker becomes ready, whoever picked this invoker must directly
* run it.
*/
bool IsHighPriority = false;
/**
* List of futures which are depending on us. This is filled by them as they get pushed if we
* are not done with our task.
*/
std::vector<vtkSmartPointer<vtkSharedFutureBase>> Dependents;
mutable std::mutex Mutex;
mutable std::condition_variable ConditionVariable;
vtkSharedFutureBase(const vtkSharedFutureBase& other) = delete;
void operator=(const vtkSharedFutureBase& other) = delete;
};
/**
* A `vtkSharedFuture` is an object returned by the methods `Push` and `PushDependent`.
*/
template <class ReturnT>
class vtkSharedFuture : public vtkSharedFutureBase
{
public:
vtkAbstractTypeMacro(vtkSharedFuture<ReturnT>, vtkSharedFutureBase);
using ReturnLValueRef = typename ReturnValueWrapper<ReturnT>::ReturnLValueRef;
using ReturnConstLValueRef = typename ReturnValueWrapper<ReturnT>::ReturnConstLValueRef;
vtkSharedFuture() = default;
/**
* This returns the return value of the pushed function.
* It returns a `ReturnT&` if `ReturnT` is not `void`. Returns `void` otherwise.
*/
ReturnLValueRef Get();
/**
* This returns the return value of the pushed function.
* It returns a `const ReturnT&` if `ReturnT` is not `void`. Returns `void` otherwise.
*/
ReturnConstLValueRef Get() const;
friend class vtkThreadedCallbackQueue;
private:
ReturnValueWrapper<ReturnT> ReturnValue;
vtkSharedFuture(const vtkSharedFuture<ReturnT>& other) = delete;
void operator=(const vtkSharedFuture<ReturnT>& other) = delete;
};
using SharedFutureBasePointer = vtkSmartPointer<vtkSharedFutureBase>;
template <class ReturnT>
using SharedFuturePointer = vtkSmartPointer<vtkSharedFuture<ReturnT>>;
/**
* Pushes a function f to be passed args... as arguments.
* f will be called as soon as a running thread has the occasion to do so, in a FIFO fashion.
* This method returns a `vtkSharedFuture`, which is an object
* allowing to synchronize the code.
*
* All the arguments of `Push` are stored persistently inside the queue. An argument passed as an
* lvalue reference will trigger a copy constructor call. It is thus advised, when possible, to
* pass rvalue references or smart pointers (`vtkSmartPointer` or `std::shared_ptr` for example)
*
* The input function can be a pointer function, a lambda expression, a `std::function`
* a functor or a member function pointer.
*
* If f is a functor, its copy constructor will be invoked if it is passed as an lvalue reference.
* Consequently, if the functor is somewhat heavy, it is adviced to pass it as an rvalue reference
* or to wrap inside a smart pointer (`std::unique_ptr` for example).
*
* If f is a member function pointer, an instance of its host class needs to be provided in the
* second parameter. Similar to the functor case, it is advised in order to avoid calling the copy
* constructor to pass it as an rvalue reference or to wrap it inside a smart pointer.
*
* Below is a short example showing off different possible insertions to this queue:
*
* @code
* struct S {
* void operator()(int) {}
* void f() {}
* void f_const() {}
* };
* void f(S&&, const S&) {}
*
* vtkNew<vtkThreadedCallbackQueue> queue;
* int x;
* S s;
*
* // Pushing a lambda expression.
* queue->Push([]{});
*
* // Pushing a function pointer
* // Note that the copy constructor is called for s
* queue->Push(&f, s, S());
*
* // Pushing a functor.
* queue->Push(S(), x);
*
* // Pushing a functor wrapped inside a smart pointer.
* queue->Push(std::unique_ptr<S>(new S()), x);
*
* // Pushing a member function pointer.
* // Don't forget to pass an instance of the host class.
* queue->Push(&S::f, S());
*
* // Pushing a const member function pointer.
* // This time, we wrap the instance of the host class inside a smart pointer.
* queue->Push(&S::f_const, std::unique_ptr<S>(new S()));
* @endcode
*
* @warning DO NOT capture lvalue references in a lambda expression pushed into the queue
* unless you can ensure that the function will be executed in the same scope where the input
* lives. If not, such captures may be destroyed before the lambda is invoked by the queue.
*/
template <class FT, class... ArgsT>
SharedFuturePointer<InvokeResult<FT>> Push(FT&& f, ArgsT&&... args);
/**
* This method behaves the same way `Push` does, with the addition of a container of `futures`.
* The function to be pushed will not be executed until the functions associated with the input
* futures have terminated.
*
* The container of futures must have forward iterator (presence of a `begin()` and `end()` member
* function).
*/
template <class SharedFutureContainerT, class FT, class... ArgsT>
SharedFuturePointer<InvokeResult<FT>> PushDependent(
SharedFutureContainerT&& priorSharedFutures, FT&& f, ArgsT&&... args);
/**
* This method blocks the current thread until all the tasks associated with each shared future
* inside `priorSharedFuture` has terminated.
*
* It is in general more efficient to call this function than to call `Wait` on each future
* individually because
* if any task associated with `priorSharedFuture` is allowed to run (i.e. it is not depending on
* any other future) and is currently waiting in queue, this function will actually run it.
*
* The current thread is blocked at most once by this function.
*
* `SharedFutureContainerT` must have a forward iterator (presence of a `begin()` and `end()`
* member function).
*/
template <class SharedFutureContainerT>
void Wait(SharedFutureContainerT&& priorSharedFuture);
///@{
/**
* Get the returned value from the task associated with the input future.
* It effectlively calls `Wait`. If the task has not started yet upon the call of this function,
* then the current thread will run the task itself.
*
* This function returns `void` if `ReturnT` is void. It returns `ReturnT&` or `const ReturnT&`
* otherwise.
*/
template <class ReturnT>
typename vtkSharedFuture<ReturnT>::ReturnLValueRef Get(SharedFuturePointer<ReturnT>& future);
template <class ReturnT>
typename vtkSharedFuture<ReturnT>::ReturnConstLValueRef Get(
const SharedFuturePointer<ReturnT>& future);
///@}
/**
* Sets the number of threads. The running state of the queue is not impacted by this method.
*
* This method is executed by the `Controller` on a different thread, so this method may terminate
* before the threads were allocated. Nevertheless, this method is thread-safe. Other calls to
* `SetNumberOfThreads()` will be queued by the `Controller`,
* which executes all received command serially in the background.
*/
void SetNumberOfThreads(int numberOfThreads);
/**
* Returns the number of allocated threads. Note that this method doesn't give any information on
* whether threads are running or not.
*
* @note `SetNumberOfThreads(int)` runs in the background. So the number of threads of this queue
* might change asynchronously as those commands are executed.
*/
int GetNumberOfThreads() const { return this->NumberOfThreads; }
private:
///@{
/**
* A `vtkInvoker` subclasses `vtkSharedFuture`. It provides storage and capabilities to run the
* input function with the given parameters.
*/
template <class FT, class... ArgsT>
class vtkInvoker;
///@}
struct InvokerImpl;
template <class FT, class... ArgsT>
using InvokerPointer = vtkSmartPointer<vtkInvoker<FT, ArgsT...>>;
class ThreadWorker;
friend class ThreadWorker;
/**
* Status that an invoker can be in.
*
* @note This is an exclusive status. The status should not combine those bits.
*/
enum Status
{
/**
* The shared state of this invoker might already have been shared with invokers it
* depends on, but this invoker's status is still hanging. At this point we cannot tell if it
* needs to be put `ON_HOLD` or just directly ran. An invoker seeing such a status in
* a dependent invoker should ignore it.
*/
CONSTRUCTING = 0x00,
/**
* The invoker is on hold.
*/
ON_HOLD = 0x01,
/**
* The invoker is currently stored inside `InvokerQueue`. It is waiting to be picked up by a
* thread.
*/
ENQUEUED = 0x02,
/**
* The invoker is currently running its task.
*/
RUNNING = 0x04,
/**
* The invoker has finished working and the returned value is available.
*/
READY = 0x08
};
/**
* This method terminates when all threads have finished. If `Destroying` is not true
* then calling this method results in a deadlock.
*
* @param startId The thread id from which we synchronize the threads.
*/
void Sync(int startId = 0);
/**
* Pops all the `nullptr` pointers at the front of `InvokerQueue` until either the queue is empty,
* or the front is not `nullptr`.
*/
void PopFrontNullptr();
/**
* We go over all the dependent future ids that have been added to the invoker we just invoked.
* For each future, we decrease the counter of the number of remaining invokers it depends on.
* When this counter reaches zero, we can move the invoker to `InvokerQueues`.
*/
void SignalDependentSharedFutures(vtkSharedFutureBase* invoker);
/**
* This function takes an `invoker`. If all futures from the input
* `priorSharedFutures` are ready, then `invoker` is executed. Else, it is stored in an internal
* container waiting to be awakened when its dependents futures have terminated.
*/
template <class SharedFutureContainerT, class InvokerT>
void HandleDependentInvoker(SharedFutureContainerT&& priorSharedFutures, InvokerT&& invoker);
/**
* This function should always be used to invoke.
* lock should be locked upon calling this function.
*/
void Invoke(vtkSharedFutureBase* invoker, std::unique_lock<std::mutex>& lock);
/**
* This will try to invoke the invoker owning a reference of `state`. The invoker will be ran if
* and only if its status is `ENQUEUED`. If not, nothing happens.
*/
bool TryInvoke(vtkSharedFutureBase* invoker);
/**
* Method to use when executing a control on the queue. Each control is run asynchronously, in the
* order they were sent to the queue, by the queue itself.
*/
template <class FT, class... ArgsT>
void PushControl(FT&& f, ArgsT&&... args);
/**
* Returns true if any prior is not ready.
*/
template <class SharedFutureContainerT>
static bool MustWait(SharedFutureContainerT&& priorSharedFutures);
/**
* Queue of workers responsible for running the jobs that are inserted.
*/
std::deque<SharedFutureBasePointer> InvokerQueue;
/**
* This mutex ensures that the queue can pop and push elements in a thread-safe manner.
*/
std::mutex Mutex;
/**
* Mutex to use when interacting with `ControlFutures`.
*/
std::mutex ControlMutex;
/**
* This mutex is used to synchronize destruction of this queue.
* Any control should abort if the queue is being destroyed.
*/
std::mutex DestroyMutex;
/**
* This mutex is used to protect access to `ThreadIdToIndex`.
*/
std::mutex ThreadIdToIndexMutex;
std::condition_variable ConditionVariable;
/**
* This atomic boolean is false until destruction. It is then used by the workers
* so they know that they need to terminate when the queue is empty.
*/
bool Destroying = false;
/**
* Number of allocated threads. Allocated threads are not necessarily running.
*/
std::atomic_int NumberOfThreads;
std::vector<std::thread> Threads;
/**
* Maps the thread id to its position inside `Threads`.
*
* This variable is used to swap threads when changing the number of threads. If we want to shrink
* the number of threads and the thread executing the shrinkage is supposed to finish, we solve
* the problem by swapping this thread id with the one of 0, who will finish in its place.
*/
std::unordered_map<std::thread::id, std::shared_ptr<std::atomic_int>> ThreadIdToIndex;
/**
* Futures of controls that were passed to they queue. They allow to run controls in the same
* order they were passed to the queue.
*/
std::unordered_set<SharedFutureBasePointer> ControlFutures;
vtkThreadedCallbackQueue(const vtkThreadedCallbackQueue&) = delete;
void operator=(const vtkThreadedCallbackQueue&) = delete;
};
VTK_ABI_NAMESPACE_END
#include "vtkThreadedCallbackQueue.txx"
#endif
#endif
// VTK-HeaderTest-Exclude: vtkThreadedCallbackQueue.h
|