1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkObjectFactory.h"
#include <array>
#include <cassert>
#include <stdexcept>
#include <tuple>
#include <type_traits>
#include <utility>
VTK_ABI_NAMESPACE_BEGIN
//-----------------------------------------------------------------------------
template <>
struct vtkThreadedCallbackQueue::ReturnValueWrapper<void, false>
{
using ReturnLValueRef = void;
using ReturnConstLValueRef = void;
void Get() const {}
};
//=============================================================================
template <class ReturnT>
struct vtkThreadedCallbackQueue::ReturnValueWrapper<ReturnT, true /* IsLValueReference */>
{
using ReturnValueImpl = ReturnValueWrapper<ReturnT, false>;
using ReturnLValueRef = ReturnT&;
using ReturnConstLValueRef = const ReturnT&;
ReturnValueWrapper() = default;
ReturnValueWrapper(ReturnT& value)
: Value(std::unique_ptr<ReturnValueImpl>(new ReturnValueImpl(value)))
{
}
ReturnT& Get() { return this->Value->Get(); }
const ReturnT& Get() const { return this->Value->Get(); }
std::unique_ptr<ReturnValueImpl> Value;
};
//=============================================================================
template <class ReturnT>
struct vtkThreadedCallbackQueue::ReturnValueWrapper<ReturnT, false /* IsLValueReference */>
{
using ReturnLValueRef = ReturnT&;
using ReturnConstLValueRef = const ReturnT&;
ReturnValueWrapper() = default;
template <class ReturnTT>
ReturnValueWrapper(ReturnTT&& value) // NOLINT(bugprone-forwarding-reference-overload)
: Value(std::forward<ReturnTT>(value))
{
}
ReturnT& Get() { return this->Value; }
const ReturnT& Get() const { return this->Value; }
ReturnT Value;
};
//-----------------------------------------------------------------------------
template <class ReturnT>
typename vtkThreadedCallbackQueue::vtkSharedFuture<ReturnT>::ReturnLValueRef
vtkThreadedCallbackQueue::vtkSharedFuture<ReturnT>::Get()
{
this->Wait();
return this->ReturnValue.Get();
}
//-----------------------------------------------------------------------------
template <class ReturnT>
typename vtkThreadedCallbackQueue::vtkSharedFuture<ReturnT>::ReturnConstLValueRef
vtkThreadedCallbackQueue::vtkSharedFuture<ReturnT>::Get() const
{
this->Wait();
return this->ReturnValue.Get();
}
//=============================================================================
struct vtkThreadedCallbackQueue::InvokerImpl
{
/**
* Substitute for std::integer_sequence which is C++14
*/
template <std::size_t... Is>
struct IntegerSequence;
template <std::size_t N, std::size_t... Is>
struct MakeIntegerSequence;
/**
* This function is used to discriminate whether you can dereference the template parameter T.
* It uses SNFINAE and jumps to the std::false_type version if it fails dereferencing T.
*/
template <class T>
static decltype(*std::declval<T&>(), std::true_type{}) CanBeDereferenced(std::nullptr_t);
template <class>
static std::false_type CanBeDereferenced(...);
template <class T, class CanBeDereferencedT = decltype(CanBeDereferenced<T>(nullptr))>
struct DereferenceImpl;
/**
* Convenient typedef that use Signature to convert the parameters of function of type FT
* to a std::tuple.
*/
template <class FT, std::size_t N = Signature<typename std::decay<FT>::type>::ArgsSize>
using ArgsTuple = typename Signature<typename std::decay<FT>::type>::ArgsTuple;
/**
* Convenient typedef that, given a function of type FT and an index I, returns the type of the
* Ith parameter of the function.
*/
template <class FT, std::size_t I>
using ArgType = typename std::tuple_element<I, ArgsTuple<FT>>::type;
/**
* This helper function returns a tuple of cherry-picked types from the argument types from
* the input function or the argument types of the provided input following this criterion:
* * If the input function expects an lvalue reference, store it in its decayed type.
* * Otherwise, store it as is (decayed input type). The conversion to the function argument
* type will be done upon invoking.
*
* This specific casting allows us to permit calling the constructor for rvalue reference inputs
* when the type differs from the one provided by the user (take a const char* input when the
* function expects a std::string for instance).
* We want to keep the input type in all other circumstances in case the user inputs smart
* pointers and the function only expects a raw pointer. If we casted it to the function argument
* type, we would not own a reference of the smart pointer.
*
* FunctionArgsTupleT is a tuple of the function native argument types (extracted from its
* signature), and InputArgsTupleT is a tuple of the types provided by the user as input
* parameters.
*/
template <class FunctionArgsTupleT, class InputArgsTupleT, std::size_t... Is>
static std::tuple<typename std::conditional<
std::is_lvalue_reference<typename std::tuple_element<Is, FunctionArgsTupleT>::type>::value,
typename std::decay<typename std::tuple_element<Is, FunctionArgsTupleT>::type>::type,
typename std::decay<typename std::tuple_element<Is, InputArgsTupleT>::type>::type>::type...>
GetStaticCastArgsTuple(IntegerSequence<Is...>);
/**
* Convenient typedef to create a tuple of types allowing to call the constructor of the function
* argument type when relevant, or hold a copy of the input parameters provided by the user
* instead.
*/
template <class FunctionArgsTupleT, class... InputArgsT>
using StaticCastArgsTuple =
decltype(GetStaticCastArgsTuple<FunctionArgsTupleT, std::tuple<InputArgsT...>>(
MakeIntegerSequence<sizeof...(InputArgsT)>()));
/**
* This holds the attributes of a function.
* There are 2 implementations: one for member function pointers, and one for all the others
* (functors, lambdas, function pointers)
*/
template <bool IsMemberFunctionPointer, class... ArgsT>
class InvokerHandle;
/**
* Actually invokes the function and sets its future. An specific implementation is needed for
* void return types.
*/
template <class ReturnT>
struct InvokerHelper
{
template <class InvokerT>
static void Invoke(InvokerT&& invoker, vtkSharedFuture<ReturnT>* future)
{
future->ReturnValue = ReturnValueWrapper<ReturnT>(invoker());
future->Status = READY;
future->ConditionVariable.notify_all();
}
};
};
//=============================================================================
template <>
struct vtkThreadedCallbackQueue::InvokerImpl::InvokerHelper<void>
{
template <class InvokerT>
static void Invoke(InvokerT&& invoker, vtkSharedFuture<void>* future)
{
invoker();
future->Status = READY;
future->ConditionVariable.notify_all();
}
};
//=============================================================================
// For lamdas or std::function
template <class ReturnT, class... ArgsT>
struct vtkThreadedCallbackQueue::Signature<ReturnT(ArgsT...)>
{
using ArgsTuple = std::tuple<ArgsT...>;
using InvokeResult = ReturnT;
static constexpr std::size_t ArgsSize = sizeof...(ArgsT);
};
//=============================================================================
// For methods inside a class ClassT
template <class ClassT, class ReturnT, class... ArgsT>
struct vtkThreadedCallbackQueue::Signature<ReturnT (ClassT::*)(ArgsT...)>
{
using ArgsTuple = std::tuple<ArgsT...>;
using InvokeResult = ReturnT;
static constexpr std::size_t ArgsSize = sizeof...(ArgsT);
};
//=============================================================================
// For const methods inside a class ClassT
template <class ClassT, class ReturnT, class... ArgsT>
struct vtkThreadedCallbackQueue::Signature<ReturnT (ClassT::*)(ArgsT...) const>
{
using ArgsTuple = std::tuple<ArgsT...>;
using InvokeResult = ReturnT;
static constexpr std::size_t ArgsSize = sizeof...(ArgsT);
};
//=============================================================================
// For function pointers
template <class ReturnT, class... ArgsT>
struct vtkThreadedCallbackQueue::Signature<ReturnT (*)(ArgsT...)>
{
using ArgsTuple = std::tuple<ArgsT...>;
using InvokeResult = ReturnT;
static constexpr std::size_t ArgsSize = sizeof...(ArgsT);
};
//=============================================================================
// For function pointers
template <class ReturnT, class... ArgsT>
struct vtkThreadedCallbackQueue::Signature<ReturnT (&)(ArgsT...)>
{
using ArgsTuple = std::tuple<ArgsT...>;
using InvokeResult = ReturnT;
static constexpr std::size_t ArgsSize = sizeof...(ArgsT);
};
//=============================================================================
// For functors
template <class FT>
struct vtkThreadedCallbackQueue::Signature
: vtkThreadedCallbackQueue::Signature<decltype(&FT::operator())>
{
};
//=============================================================================
template <std::size_t... Is>
struct vtkThreadedCallbackQueue::InvokerImpl::IntegerSequence
{
};
//=============================================================================
template <std::size_t N, std::size_t... Is>
struct vtkThreadedCallbackQueue::InvokerImpl::MakeIntegerSequence
: vtkThreadedCallbackQueue::InvokerImpl::MakeIntegerSequence<N - 1, N - 1, Is...>
{
};
//=============================================================================
template <std::size_t... Is>
struct vtkThreadedCallbackQueue::InvokerImpl::MakeIntegerSequence<0, Is...>
: vtkThreadedCallbackQueue::InvokerImpl::IntegerSequence<Is...>
{
};
//=============================================================================
template <class T>
struct vtkThreadedCallbackQueue::InvokerImpl::DereferenceImpl<T,
std::true_type /* CanBeDereferencedT */>
{
using Type = decltype(*std::declval<T>());
static Type& Get(T& instance) { return *instance; }
};
//=============================================================================
template <class T>
struct vtkThreadedCallbackQueue::InvokerImpl::DereferenceImpl<T,
std::false_type /* CanBeDereferencedT */>
{
using Type = T;
static Type& Get(T& instance) { return instance; }
};
//=============================================================================
template <class T>
struct vtkThreadedCallbackQueue::Dereference<T, std::nullptr_t>
{
using Type = typename InvokerImpl::DereferenceImpl<T>::Type;
};
//=============================================================================
template <class FT, class ObjectT, class... ArgsT>
class vtkThreadedCallbackQueue::InvokerImpl::InvokerHandle<true /* IsMemberFunctionPointer */, FT,
ObjectT, ArgsT...>
{
public:
template <class FTT, class ObjectTT, class... ArgsTT>
InvokerHandle(FTT&& f, ObjectTT&& instance, ArgsTT&&... args)
: Function(std::forward<FTT>(f))
, Instance(std::forward<ObjectTT>(instance))
, Args(std::forward<ArgsTT>(args)...)
{
}
InvokeResult<FT> operator()() { return this->Invoke(MakeIntegerSequence<sizeof...(ArgsT)>()); }
private:
template <std::size_t... Is>
InvokeResult<FT> Invoke(IntegerSequence<Is...>)
{
// If the input object is wrapped inside a pointer (could be shared_ptr, vtkSmartPointer),
// we need to dereference the object before invoking it.
auto& deref = DereferenceImpl<ObjectT>::Get(this->Instance);
// The static_cast to ArgType forces casts to the correct types of the function.
// There are conflicts with rvalue references not being able to be converted to lvalue
// references if this static_cast is not performed
return (deref.*Function)(static_cast<ArgType<FT, Is>>(std::get<Is>(this->Args))...);
}
FT Function;
// We DO NOT want to hold lvalue references! They could be destroyed before we execute them.
// This forces to call the copy constructor on lvalue references inputs.
typename std::decay<ObjectT>::type Instance;
// We want to hold an instance of the arguments in the type expected by the function rather than
// the types provided by the user when the function expects a lvalue reference.
// This way, if there is a conversion to be done, it can be done
// in the constructor of each type.
//
// Example: The user provides a string as "example", but the function expects a std::string&.
// We can directly store this argument as a std::string and allow to pass it to the function as a
// std::string.
StaticCastArgsTuple<ArgsTuple<FT>, ArgsT...> Args;
};
//=============================================================================
template <class FT, class... ArgsT>
class vtkThreadedCallbackQueue::InvokerImpl::InvokerHandle<false /* IsMemberFunctionPointer */, FT,
ArgsT...>
{
public:
template <class FTT, class... ArgsTT>
InvokerHandle(FTT&& f, ArgsTT&&... args)
: Function(std::forward<FTT>(f))
, Args(std::forward<ArgsTT>(args)...)
{
}
InvokeResult<FT> operator()() { return this->Invoke(MakeIntegerSequence<sizeof...(ArgsT)>()); }
private:
template <std::size_t... Is>
InvokeResult<FT> Invoke(IntegerSequence<Is...>)
{
// If the input is a functor and is wrapped inside a pointer (could be shared_ptr),
// we need to dereference the functor before invoking it.
auto& f = DereferenceImpl<FT>::Get(this->Function);
// The static_cast to ArgType forces casts to the correct types of the function.
// There are conflicts with rvalue references not being able to be converted to lvalue
// references if this static_cast is not performed
return f(static_cast<ArgType<decltype(f), Is>>(std::get<Is>(this->Args))...);
}
// We DO NOT want to hold lvalue references! They could be destroyed before we execute them.
// This forces to call the copy constructor on lvalue references inputs.
typename std::decay<FT>::type Function;
// We want to hold an instance of the arguments in the type expected by the function rather than
// the types provided by the user when the function expects a lvalue reference.
// This way, if there is a conversion to be done, it can be done
// in the constructor of each type.
//
// Example: The user provides a string as "example", but the function expects a std::string&.
// We can directly store this argument as a std::string and allow to pass it to the function as a
// std::string.
StaticCastArgsTuple<ArgsTuple<typename Dereference<FT>::Type>, ArgsT...> Args;
};
//=============================================================================
template <class FT, class... ArgsT>
class vtkThreadedCallbackQueue::vtkInvoker
: public vtkThreadedCallbackQueue::vtkSharedFuture<vtkThreadedCallbackQueue::InvokeResult<FT>>
{
public:
template <class... ArgsTT>
static vtkInvoker<FT, ArgsT...>* New(ArgsTT&&... args)
{
auto result = new vtkInvoker<FT, ArgsT...>(std::forward<ArgsTT>(args)...);
result->InitializeObjectBase();
return result;
}
template <class... ArgsTT>
vtkInvoker(ArgsTT&&... args)
: Impl(std::forward<ArgsTT>(args)...)
{
}
void operator()() override
{
assert(this->Status == RUNNING && "Status should be RUNNING");
InvokerImpl::InvokerHelper<InvokeResult<FT>>::Invoke(this->Impl, this);
}
friend class vtkThreadedCallbackQueue;
private:
InvokerImpl::InvokerHandle<std::is_member_function_pointer<FT>::value, FT, ArgsT...> Impl;
vtkInvoker(const vtkInvoker<FT, ArgsT...>& other) = delete;
void operator=(const vtkInvoker<FT, ArgsT...>& other) = delete;
};
//-----------------------------------------------------------------------------
template <class SharedFutureContainerT, class InvokerT>
void vtkThreadedCallbackQueue::HandleDependentInvoker(
SharedFutureContainerT&& priorSharedFutures, InvokerT&& invoker)
{
// We look at all the dependent futures. Each time we find one, we notify the corresponding
// invoker that we are waiting.
// When the signaled invokers terminate, the counter will be decreased, and when it reaches
// zero, this invoker will be ready to run.
if (!priorSharedFutures.empty())
{
for (const auto& prior : priorSharedFutures)
{
// We can do a quick check to avoid locking if possible. If the prior shared future is ready,
// we can just move on.
if (prior->Status == READY)
{
continue;
}
// We need to lock the shared state (so we block the invoker side).
// This way, we can make sure that if the invoker is still running, we notify it that we
// depend on it before it checks its dependents in SignalDependentSharedFutures
std::unique_lock<std::mutex> lock(prior->Mutex);
if (prior->Status != READY)
{
// We notify the invoker we depend on by adding ourselves in DependentSharedFutures.
prior->Dependents.emplace_back(invoker);
// This does not need to be locked because the shared state of this future is not done
// constructing yet, so the invoker in SignalDependentSharedFutures will never try do
// anything with it. And it is okay, because at the end of the day, we increment, the
// invoker decrements, and if we end up with 0 remaining prior futures, we execute the
// invoker anyway, so the invoker side has nothing to do.
lock.unlock();
++invoker->NumberOfPriorSharedFuturesRemaining;
}
}
}
// We notify every invokers we depend on that we are done constructing.
std::unique_lock<std::mutex> lock(invoker->Mutex);
if (invoker->NumberOfPriorSharedFuturesRemaining)
{
invoker->Status = ON_HOLD;
}
else
{
this->Invoke(std::forward<InvokerT>(invoker), lock);
}
}
//-----------------------------------------------------------------------------
template <class SharedFutureContainerT>
bool vtkThreadedCallbackQueue::MustWait(SharedFutureContainerT&& priorSharedFutures)
{
for (const vtkSharedFutureBase* prior : priorSharedFutures)
{
if (prior->Status != READY)
{
return true;
}
}
return false;
}
//-----------------------------------------------------------------------------
template <class SharedFutureContainerT>
void vtkThreadedCallbackQueue::Wait(SharedFutureContainerT&& priorSharedFutures)
{
int mustWait = false;
// First pass: we look if we find any prior that is neither on hold, constructing,
// ready or running.
// This means that the associated invoker is enqueued and waiting. We can take care of it
// and save time instead of waiting.
for (vtkSharedFutureBase* prior : priorSharedFutures)
{
switch (prior->Status.load())
{
case RUNNING:
case ON_HOLD:
case CONSTRUCTING:
mustWait = true;
break;
case ENQUEUED:
mustWait |= !this->TryInvoke(prior);
break;
}
}
if (!mustWait || !this->MustWait(std::forward<SharedFutureContainerT>(priorSharedFutures)))
{
return;
}
// Second pass:
// Some priors are not ready...
// We create an invoker and a future with an empty lambda.
// The idea is to pass the prior shared futures to the routine HandleDependentInvoker.
// If any prior is not done, the created invoker will be placed in InvokersOnHold and launched
// automatically when it is ready.
// We can just wait on the shared future we just created
auto emptyLambda = [] {};
auto invoker = InvokerPointer<decltype(emptyLambda)>::New(std::move(emptyLambda));
// We notify whoever harvests this invoker that we want to be run right away and not pushed in the
// InvokerQueue.
invoker->IsHighPriority = true;
this->HandleDependentInvoker(std::forward<SharedFutureContainerT>(priorSharedFutures), invoker);
invoker->Wait();
}
//-----------------------------------------------------------------------------
template <class ReturnT>
typename vtkThreadedCallbackQueue::vtkSharedFuture<ReturnT>::ReturnLValueRef
vtkThreadedCallbackQueue::Get(SharedFuturePointer<ReturnT>& future)
{
this->Wait(std::array<vtkSharedFuture<ReturnT>*, 1>{ future });
return future->Get();
}
//-----------------------------------------------------------------------------
template <class ReturnT>
typename vtkThreadedCallbackQueue::vtkSharedFuture<ReturnT>::ReturnConstLValueRef
vtkThreadedCallbackQueue::Get(const SharedFuturePointer<ReturnT>& future)
{
this->Wait(std::array<vtkSharedFuture<ReturnT>*, 1>{ future });
return future->Get();
}
//-----------------------------------------------------------------------------
template <class SharedFutureContainerT, class FT, class... ArgsT>
vtkThreadedCallbackQueue::SharedFuturePointer<vtkThreadedCallbackQueue::InvokeResult<FT>>
vtkThreadedCallbackQueue::PushDependent(
SharedFutureContainerT&& priorSharedFutures, FT&& f, ArgsT&&... args)
{
// If we can avoid doing tricks with dependent shared futures, let's do it.
if (!this->MustWait(std::forward<SharedFutureContainerT>(priorSharedFutures)))
{
return this->Push(std::forward<FT>(f), std::forward<ArgsT>(args)...);
}
using InvokerPointerType = InvokerPointer<FT, ArgsT...>;
auto invoker = InvokerPointerType::New(std::forward<FT>(f), std::forward<ArgsT>(args)...);
this->Push(
&vtkThreadedCallbackQueue::HandleDependentInvoker<SharedFutureContainerT, InvokerPointerType>,
this, std::forward<SharedFutureContainerT>(priorSharedFutures), invoker);
return invoker;
}
//-----------------------------------------------------------------------------
template <class FT, class... ArgsT>
void vtkThreadedCallbackQueue::PushControl(FT&& f, ArgsT&&... args)
{
struct Worker
{
void operator()(vtkThreadedCallbackQueue* self, FT&& _f, ArgsT&&... _args)
{
_f(std::forward<ArgsT>(_args)...);
std::lock_guard<std::mutex> lock(self->ControlMutex);
self->ControlFutures.erase(this->Future);
}
SharedFutureBasePointer Future;
};
Worker worker;
using InvokerPointerType = InvokerPointer<Worker, vtkThreadedCallbackQueue*, FT, ArgsT...>;
auto invoker =
InvokerPointerType::New(worker, this, std::forward<FT>(f), std::forward<ArgsT>(args)...);
worker.Future = invoker;
// We want the setting of ControlFutures to be strictly sequential. We don't want race conditions
// on this container with 2 `PushControl` that are called almost simultaneously and have invokers
// depend on flaky futures.
auto localControlFutures = [this, &invoker] {
std::lock_guard<std::mutex> lock(this->ControlMutex);
// We create a copy of the control futures that doesn't have ourselves in yet.
auto result = this->ControlFutures;
this->ControlFutures.emplace(invoker);
return result;
}();
// If we can avoid doing tricks with dependent shared futures, let's do it.
if (!this->MustWait(localControlFutures))
{
// The queue is not running yet, we need to invoke by hand.
if (this->Threads.empty())
{
// No need to lock anything here. We are the only invoker that is allowed to run here.
invoker->Status = RUNNING;
(*invoker)();
return;
}
{
std::lock_guard<std::mutex> invokerLock(invoker->Mutex);
invoker->Status = ENQUEUED;
std::lock_guard<std::mutex> lock(this->Mutex);
invoker->InvokerIndex =
this->InvokerQueue.empty() ? 0 : this->InvokerQueue.front()->InvokerIndex - 1;
// We give some priority to controls, we push them in the front.
this->InvokerQueue.emplace_front(invoker);
}
this->ConditionVariable.notify_one();
return;
}
// Controls must be run ASAP
invoker->IsHighPriority = true;
// Invoker will probably end up on hold and be ran automatically when prior controls have
// terminated.
this->HandleDependentInvoker(localControlFutures, invoker);
}
//-----------------------------------------------------------------------------
template <class FT, class... ArgsT>
vtkThreadedCallbackQueue::SharedFuturePointer<vtkThreadedCallbackQueue::InvokeResult<FT>>
vtkThreadedCallbackQueue::Push(FT&& f, ArgsT&&... args)
{
auto invoker =
InvokerPointer<FT, ArgsT...>::New(std::forward<FT>(f), std::forward<ArgsT>(args)...);
invoker->Status = ENQUEUED;
{
std::lock_guard<std::mutex> lock(this->Mutex);
invoker->InvokerIndex = this->InvokerQueue.empty() ? 0
: this->InvokerQueue.front()->InvokerIndex +
static_cast<vtkIdType>(this->InvokerQueue.size());
this->InvokerQueue.emplace_back(invoker);
}
this->ConditionVariable.notify_one();
return invoker;
}
VTK_ABI_NAMESPACE_END
|