1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
// Funded by CEA, DAM, DIF, F-91297 Arpajon, France
#ifndef vtkImplicitArrayTraits_h
#define vtkImplicitArrayTraits_h
#include "vtkSystemIncludes.h"
#include <numeric>
#include <type_traits>
/**
* This file contains the traits for the implicit array mechanism in VTK. These traits are very much
* an internal to vtkImplicitArrays and normal developers looking to develop a new vtkImplicitArray
* should (ideally) not have to open this file.
*
* In order to ensure that template parameters passed to the vtkImplicitArray share a common
* interface without having to subclass all of them from the same abstract class, we have decided to
* use a trait mechanism to statically dispatch the functionalities of types passed as template
* parameters to the array.
*
* There is 1 mandatory traits that a template type to vtkImplicitArray must implement:
* - has_map_trait || is_closure_trait: ensures an implementation of int -> value
*
* Potential improvements to implicit arrays which would allow for write access would include the
* following 2 optional traits:
* - has_insert_trait || is_reference_closure_trait: provides an implementation to update the
* internals of the template type to add or set new values to the array
* - has_remove_trait: provides an implementation to update the internals of the template to remove
* values from the array
*
* All the traits defining the behavior of the implicit "function" or "backend" to the
* vtkImplicitArray should be composited into the implicit_array_traits
*/
namespace vtk
{
namespace detail
{
VTK_ABI_NAMESPACE_BEGIN
template <typename... Ts>
struct make_void
{
using type = void;
};
template <typename... Ts>
using void_t = typename make_void<Ts...>::type;
///@{
/**
* \struct has_map_trait
* \brief used to check whether the template type has a method named map
*/
template <typename, typename = void>
struct has_map_trait : std::false_type
{
};
template <typename T>
struct has_map_trait<T, void_t<decltype(&std::remove_reference<T>::type::map)>>
: public has_map_trait<decltype(&std::remove_reference<T>::type::map)>
{
using type = T;
};
template <typename T>
struct has_map_trait<T*> : public has_map_trait<T>
{
};
template <typename T>
struct has_map_trait<const T> : public has_map_trait<T>
{
};
template <typename R, typename T, typename Arg>
struct has_map_trait<R (T::*)(Arg) const> : public has_map_trait<R(Arg)>
{
};
template <typename R, typename Arg>
struct has_map_trait<R(Arg)>
{
static_assert(std::is_integral<Arg>::value, "Argument to map must be integral type");
static constexpr bool value = true;
using rtype = R;
};
///@}
///@{
/**
* \struct is_closure_trait
* \brief A trait determining whether an object acts like a mono-variable integer closure
*/
template <typename, typename = void>
struct is_closure_trait : std::false_type
{
};
template <typename Closure>
struct is_closure_trait<Closure, void_t<decltype(&Closure::operator())>>
: public is_closure_trait<decltype(&Closure::operator())>
{
using type = Closure;
};
template <typename Closure>
struct is_closure_trait<Closure*> : public is_closure_trait<Closure>
{
};
template <typename Closure>
struct is_closure_trait<const Closure> : public is_closure_trait<Closure>
{
};
template <typename Closure>
struct is_closure_trait<Closure&> : public is_closure_trait<Closure>
{
};
template <typename Closure, typename R, typename Arg>
struct is_closure_trait<R (Closure::*)(Arg) const> : public is_closure_trait<R(Arg)>
{
};
template <typename R, typename Arg>
struct is_closure_trait<R (*)(Arg)> : public is_closure_trait<R(Arg)>
{
};
template <typename R, typename Arg>
struct is_closure_trait<R(Arg)>
{
static_assert(std::is_integral<Arg>::value, "Argument to closure must be integral type");
static constexpr bool value = true;
using rtype = R;
};
///@}
///@{
/**
* \struct has_map_tuple_trait
* \brief used to check whether the template type has a method named mapTuple
*/
template <typename, typename = void>
struct has_map_tuple_trait : std::false_type
{
};
template <typename T>
struct has_map_tuple_trait<T, void_t<decltype(&std::remove_reference<T>::type::mapTuple)>>
: public has_map_tuple_trait<decltype(&std::remove_reference<T>::type::mapTuple)>
{
using type = T;
};
template <typename T>
struct has_map_tuple_trait<T*> : public has_map_tuple_trait<T>
{
};
template <typename T>
struct has_map_tuple_trait<const T> : public has_map_tuple_trait<T>
{
};
template <typename T, typename ArgIdx, typename ArgTup>
struct has_map_tuple_trait<void (T::*)(ArgIdx, ArgTup*) const>
: public has_map_tuple_trait<void(ArgIdx, ArgTup*)>
{
};
template <typename ArgIdx, typename ArgTup>
struct has_map_tuple_trait<void(ArgIdx, ArgTup*)>
{
static_assert(std::is_integral<ArgIdx>::value, "Argument to mapTuple must be integral type");
static constexpr bool value = true;
using rtype = ArgTup;
};
///@}
///@{
/**
* \struct has_map_component_trait
* \brief used to check whether the template type has a method named mapComponent
*/
template <typename, typename = void>
struct has_map_component_trait : std::false_type
{
};
template <typename T>
struct has_map_component_trait<T, void_t<decltype(&std::remove_reference<T>::type::mapComponent)>>
: public has_map_component_trait<decltype(&std::remove_reference<T>::type::mapComponent)>
{
using type = T;
};
template <typename T>
struct has_map_component_trait<T*> : public has_map_component_trait<T>
{
};
template <typename T>
struct has_map_component_trait<const T> : public has_map_component_trait<T>
{
};
template <typename R, typename T, typename ArgTupIdx, typename ArgCompIdx>
struct has_map_component_trait<R (T::*)(ArgTupIdx, ArgCompIdx) const>
: public has_map_component_trait<R(ArgTupIdx, ArgCompIdx)>
{
};
template <typename R, typename ArgTupIdx, typename ArgCompIdx>
struct has_map_component_trait<R(ArgTupIdx, ArgCompIdx)>
{
static_assert(
std::is_integral<ArgTupIdx>::value, "1st Argument to mapComponent must be integral type");
static_assert(
std::is_integral<ArgCompIdx>::value, "2nd Argument to mapComponent must be integral type");
static constexpr bool value = true;
using rtype = R;
};
///@}
namespace iarrays
{
/**
* \enum ReadOperatorCodes
* \brief An enum for formalizing the different trait types accepted for defining a "readable"
* object
*/
enum ReadOperatorCodes
{
NONE,
MAP,
CLOSURE
};
}
///@{
/**
* \struct can_map_trait
* \brief An intermediate trait for exposing a unified trait interface
*/
template <typename T, typename = void>
struct can_map_trait
{
using type = T;
static constexpr bool value = false;
using rtype = void;
static constexpr iarrays::ReadOperatorCodes code = iarrays::NONE;
};
template <typename T>
struct can_map_trait<T, void_t<typename has_map_trait<T>::rtype>>
{
using type = T;
static constexpr bool value = true;
using rtype = typename has_map_trait<T>::rtype;
static constexpr iarrays::ReadOperatorCodes code = iarrays::MAP;
};
///@}
///@{
/**
* \struct can_close_trait
* \brief An intermediate trait for exposing a unified trait interface
*/
template <typename T, typename = void>
struct can_close_trait
{
using type = T;
static constexpr bool value = false;
using rtype = void;
static constexpr iarrays::ReadOperatorCodes code = iarrays::NONE;
};
template <typename T>
struct can_close_trait<T, void_t<typename is_closure_trait<T>::rtype>>
{
using type = T;
static constexpr bool value = true;
using rtype = typename is_closure_trait<T>::rtype;
static constexpr iarrays::ReadOperatorCodes code = iarrays::CLOSURE;
};
///@}
///@{
/**
* \struct can_map_tuple_trait
* \brief An intermediate trait for exposing a unified trait interface
*/
template <typename T, typename = void>
struct can_map_tuple_trait
{
using type = T;
static constexpr bool value = false;
using rtype = void;
};
template <typename T>
struct can_map_tuple_trait<T, void_t<typename has_map_tuple_trait<T>::rtype>>
{
using type = T;
static constexpr bool value = true;
using rtype = typename has_map_tuple_trait<T>::rtype;
};
///@}
///@{
/**
* \struct can_map_component_trait
* \brief An intermediate trait for exposing a unified trait interface
*/
template <typename T, typename = void>
struct can_map_component_trait
{
using type = T;
static constexpr bool value = false;
using rtype = void;
};
template <typename T>
struct can_map_component_trait<T, void_t<typename has_map_component_trait<T>::rtype>>
{
using type = T;
static constexpr bool value = true;
using rtype = typename has_map_component_trait<T>::rtype;
};
///@}
///@{
/**
* \struct can_get_memory_size_trait
* \brief used to check whether the template type has a method named getMemorySize
*/
template <typename, typename = void>
struct can_get_memory_size_trait : std::false_type
{
};
template <typename T>
struct can_get_memory_size_trait<T,
void_t<decltype(&std::remove_reference<T>::type::getMemorySize)>>
: public can_get_memory_size_trait<decltype(&std::remove_reference<T>::type::getMemorySize)>
{
using type = T;
static constexpr bool value = true;
};
template <typename T>
struct can_get_memory_size_trait<T*> : public can_get_memory_size_trait<T>
{
};
template <typename T>
struct can_get_memory_size_trait<const T> : public can_get_memory_size_trait<T>
{
};
///@}
/**
* \struct implicit_array_traits
* \brief A composite trait for handling all the different capabilities a "backend" to an
* implicit array can have
*/
template <typename T>
struct implicit_array_traits
{
using type = T;
using trait =
typename std::conditional<can_map_trait<T>::value, can_map_trait<T>, can_close_trait<T>>::type;
static constexpr bool can_read = trait::value;
using rtype = typename trait::rtype;
static constexpr iarrays::ReadOperatorCodes code = trait::code;
static constexpr bool default_constructible = std::is_default_constructible<T>::value;
static constexpr bool can_direct_read_tuple = can_map_tuple_trait<T>::value;
static constexpr bool can_direct_read_component = can_map_component_trait<T>::value;
static constexpr bool can_get_memory_size = can_get_memory_size_trait<T>::value;
};
VTK_ABI_NAMESPACE_END
} // detail
} // vtk
#endif // vtkImplicitArrayTraits_h
|