1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkInitialValueProblemSolver
* @brief Integrate a set of ordinary
* differential equations (initial value problem) in time.
*
*
* Given a vtkFunctionSet which returns dF_i(x_j, t)/dt given x_j and
* t, vtkInitialValueProblemSolver computes the value of F_i at t+deltat.
*
* @warning
* vtkInitialValueProblemSolver and it's subclasses are not thread-safe.
* You should create a new integrator for each thread.
*
* @sa
* vtkRungeKutta2 vtkRungeKutta4
*/
#ifndef vtkInitialValueProblemSolver_h
#define vtkInitialValueProblemSolver_h
#include "vtkCommonMathModule.h" // For export macro
#include "vtkObject.h"
VTK_ABI_NAMESPACE_BEGIN
class vtkFunctionSet;
class VTKCOMMONMATH_EXPORT vtkInitialValueProblemSolver : public vtkObject
{
public:
vtkTypeMacro(vtkInitialValueProblemSolver, vtkObject);
void PrintSelf(ostream& os, vtkIndent indent) override;
///@{
/**
* Given initial values, xprev , initial time, t and a requested time
* interval, delT calculate values of x at t+delTActual (xnext).
* For certain concrete sub-classes delTActual != delT. This occurs
* when the solver supports adaptive stepsize control. If this
* is the case, the solver tries to change to stepsize such that
* the (estimated) error of the integration is less than maxError.
* The solver will not set the stepsize smaller than minStep or
* larger than maxStep.
* Also note that delT is an in/out argument. Adaptive solvers
* will modify delT to reflect the best (estimated) size for the next
* integration step.
* An estimated value for the error is returned (by reference) in error.
* Note that only some concrete sub-classes support this. Otherwise,
* the error is set to 0.
* This method returns an error code representing the nature of
* the failure:
* OutOfDomain = 1,
* NotInitialized = 2,
* UnexpectedValue = 3
*/
virtual int ComputeNextStep(
double* xprev, double* xnext, double t, double& delT, double maxError, double& error)
{
return this->ComputeNextStep(xprev, xnext, t, delT, maxError, error, nullptr);
}
virtual int ComputeNextStep(double* xprev, double* xnext, double t, double& delT, double maxError,
double& error, void* userData)
{
double minStep = delT;
double maxStep = delT;
double delTActual;
return this->ComputeNextStep(
xprev, nullptr, xnext, t, delT, delTActual, minStep, maxStep, maxError, error, userData);
}
virtual int ComputeNextStep(double* xprev, double* dxprev, double* xnext, double t, double& delT,
double maxError, double& error)
{
return this->ComputeNextStep(xprev, dxprev, xnext, t, delT, maxError, error, nullptr);
}
virtual int ComputeNextStep(double* xprev, double* dxprev, double* xnext, double t, double& delT,
double maxError, double& error, void* userData)
{
double minStep = delT;
double maxStep = delT;
double delTActual;
return this->ComputeNextStep(
xprev, dxprev, xnext, t, delT, delTActual, minStep, maxStep, maxError, error, userData);
}
virtual int ComputeNextStep(double* xprev, double* xnext, double t, double& delT,
double& delTActual, double minStep, double maxStep, double maxError, double& error)
{
return this->ComputeNextStep(
xprev, xnext, t, delT, delTActual, minStep, maxStep, maxError, error, nullptr);
}
virtual int ComputeNextStep(double* xprev, double* xnext, double t, double& delT,
double& delTActual, double minStep, double maxStep, double maxError, double& error,
void* userData)
{
return this->ComputeNextStep(
xprev, nullptr, xnext, t, delT, delTActual, minStep, maxStep, maxError, error, userData);
}
virtual int ComputeNextStep(double* xprev, double* dxprev, double* xnext, double t, double& delT,
double& delTActual, double minStep, double maxStep, double maxError, double& error)
{
return this->ComputeNextStep(
xprev, dxprev, xnext, t, delT, delTActual, minStep, maxStep, maxError, error, nullptr);
}
virtual int ComputeNextStep(double* vtkNotUsed(xprev), double* vtkNotUsed(dxprev),
double* vtkNotUsed(xnext), double vtkNotUsed(t), double& vtkNotUsed(delT),
double& vtkNotUsed(delTActual), double vtkNotUsed(minStep), double vtkNotUsed(maxStep),
double vtkNotUsed(maxError), double& vtkNotUsed(error), void* vtkNotUsed(userData))
{
return 0;
}
///@}
///@{
/**
* Set / get the dataset used for the implicit function evaluation.
*/
virtual void SetFunctionSet(vtkFunctionSet* fset);
vtkGetObjectMacro(FunctionSet, vtkFunctionSet);
///@}
/**
* Returns 1 if the solver uses adaptive stepsize control,
* 0 otherwise
*/
virtual vtkTypeBool IsAdaptive() { return this->Adaptive; }
enum ErrorCodes
{
OUT_OF_DOMAIN = 1,
NOT_INITIALIZED = 2,
UNEXPECTED_VALUE = 3
};
protected:
vtkInitialValueProblemSolver();
~vtkInitialValueProblemSolver() override;
virtual void Initialize();
vtkFunctionSet* FunctionSet;
double* Vals;
double* Derivs;
int Initialized;
vtkTypeBool Adaptive;
private:
vtkInitialValueProblemSolver(const vtkInitialValueProblemSolver&) = delete;
void operator=(const vtkInitialValueProblemSolver&) = delete;
};
VTK_ABI_NAMESPACE_END
#endif
|