1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
import os
import os.path
from vtkmodules.vtkCommonCore import (
vtkDoubleArray,
vtkLookupTable,
vtkMinimalStandardRandomSequence,
vtkPoints,
vtkVariant,
)
from vtkmodules.vtkCommonColor import vtkColorSeries
from vtkmodules.vtkCommonDataModel import (
vtkCellArray,
vtkDataSet,
vtkPlane,
vtkPolyData,
)
from vtkmodules.vtkFiltersCore import (
vtkContourFilter,
vtkCutter,
vtkGlyph3D,
vtkPolyDataNormals,
)
from vtkmodules.vtkFiltersGeneral import vtkClipDataSet
from vtkmodules.vtkFiltersGeometry import (
vtkDataSetSurfaceFilter,
vtkUnstructuredGridGeometryFilter,
)
from vtkmodules.vtkFiltersSources import vtkSphereSource
from vtkmodules.vtkIOXML import vtkXMLUnstructuredGridReader
from vtkmodules.vtkRenderingCore import (
vtkActor,
vtkDataSetMapper,
vtkRenderWindow,
vtkRenderWindowInteractor,
vtkRenderer,
vtkWindowToImageFilter,
)
import vtkmodules.vtkInteractionStyle
import vtkmodules.vtkRenderingFreeType
import vtkmodules.vtkRenderingOpenGL2
from vtkmodules.test import Testing
import unittest
try:
import numpy as np
numpyMissing = False
except:
numpyMissing = True
renderWindowSizeMatchedRequest = None
def renderWindowTooSmall():
global renderWindowSizeMatchedRequest
if renderWindowSizeMatchedRequest == None:
# Make sure we can render at the desired size:
trw = vtkRenderWindow()
trr = vtkRenderer()
trr.SetBackground(1,1,1)
trw.SetSize(300,300)
trw.AddRenderer(trr)
twi = vtkWindowToImageFilter()
twi.SetInput(trw)
twi.Update()
tim = twi.GetOutput()
renderWindowSizeMatchedRequest = (trw.GetSize() == tim.GetDimensions()[0:2])
if not renderWindowSizeMatchedRequest:
print('Skipping because RW %s != WI %s' % (trw.GetSize(), tim.GetDimensions()[0:2]))
return not renderWindowSizeMatchedRequest
class LagrangeGeometricOperations(Testing.vtkTest):
def setUp(self):
self.rw = vtkRenderWindow()
self.rr = vtkRenderer()
self.ri = vtkRenderWindowInteractor()
self.rw.AddRenderer(self.rr)
self.rw.SetInteractor(self.ri)
self.ri.Initialize()
self.rs = self.ri.GetInteractorStyle()
self.rs.SetCurrentStyleToTrackballCamera()
self.rs.SetCurrentStyleToMultiTouchCamera()
self.rr.SetBackground(1,1,1)
self.rw.SetSize(300, 300)
self.rdr = vtkXMLUnstructuredGridReader()
self.rdr.SetFileName(self.pathToData('Elements.vtu'))
print('Reading {:1}'.format(self.rdr.GetFileName()))
self.rdr.Update()
def addToScene(self, filt):
ac = vtkActor()
mp = vtkDataSetMapper()
mp.SetInputConnection(filt.GetOutputPort())
ac.SetMapper(mp)
self.rr.AddActor(ac)
return (ac, mp)
def addSurfaceToScene(self, subdivisions=3):
## Surface actor
dss = vtkDataSetSurfaceFilter()
dss.SetInputConnection(self.rdr.GetOutputPort())
dss.SetNonlinearSubdivisionLevel(subdivisions)
nrm = vtkPolyDataNormals()
nrm.SetInputConnection(dss.GetOutputPort())
a2, m2 = self.addToScene(nrm)
a2.GetProperty().SetOpacity(0.2)
# wri = vtkXMLPolyDataWriter()
# wri.SetFileName('/tmp/s2.vtp')
# wri.SetInputConnection(nrm.GetOutputPort())
# wri.SetDataModeToAscii()
# wri.Write()
return (a2, m2)
@unittest.skipIf(renderWindowTooSmall(), 'Cannot render at requested size')
def testContour(self):
## Contour actor
con = vtkContourFilter()
con.SetInputConnection(self.rdr.GetOutputPort())
con.SetInputArrayToProcess(0,0,0, vtkDataSet.FIELD_ASSOCIATION_POINTS_THEN_CELLS, 'Ellipsoid')
con.SetComputeNormals(1)
con.SetComputeScalars(1)
con.SetComputeGradients(1)
con.SetNumberOfContours(4)
con.SetValue(0, 2.5)
con.SetValue(1, 1.5)
con.SetValue(2, 0.5)
con.SetValue(3, 1.05)
con.Update()
# Add the contour to the scene:
a1, m1 = self.addToScene(con)
clr = vtkColorSeries()
lkup = vtkLookupTable()
# Color the contours with a qualitative color scheme:
clr.SetColorScheme(vtkColorSeries.BREWER_QUALITATIVE_DARK2)
clr.BuildLookupTable(lkup, vtkColorSeries.CATEGORICAL);
lkup.SetAnnotation(vtkVariant(0.5), 'Really Low')
lkup.SetAnnotation(vtkVariant(1.05), 'Somewhat Low')
lkup.SetAnnotation(vtkVariant(1.5), 'Medium')
lkup.SetAnnotation(vtkVariant(2.5), 'High')
m1.SelectColorArray('Ellipsoid')
m1.SetLookupTable(lkup)
a2, m2 = self.addSurfaceToScene()
self.ri.Initialize()
cam = self.rr.GetActiveCamera()
cam.SetPosition(12.9377265875, 6.5914481094, 7.54647854482)
cam.SetFocalPoint(4.38052401617, 0.925973308028, 1.91021697659)
cam.SetViewUp(-0.491867406412, -0.115590747077, 0.862963054655)
## Other nice viewpoints:
# cam.SetPosition(-1.53194314907, -6.07277748432, 19.283152654)
# cam.SetFocalPoint(4.0, 2.25, 2.25)
# cam.SetViewUp(0.605781341771, 0.619386648223, 0.499388772365)
#
# cam.SetPosition(10.5925480421, -3.08988382244, 9.2072891403)
# cam.SetFocalPoint(4.0, 2.25, 2.25)
# cam.SetViewUp(-0.384040517561, 0.519961374525, 0.762989547683)
self.rw.Render()
image = 'LagrangeGeometricOperations-Contour.png'
# events = self.prepareTestImage(self.ri, filename=os.path.join('/tmp', image))
Testing.compareImage(self.rw, self.pathToValidatedOutput(image))
# Testing.interact()
## Write the contours out
# wri = vtkXMLPolyDataWriter()
# wri.SetInputConnection(con.GetOutputPort())
# wri.SetFileName('/tmp/contours.vtp')
# wri.Write()
@unittest.skipIf(renderWindowTooSmall(), 'Cannot render at requested size')
def testBoundaryExtraction(self):
ugg = vtkUnstructuredGridGeometryFilter()
ugg.SetInputConnection(self.rdr.GetOutputPort())
ugg.Update()
a1, m1 = self.addToScene(ugg)
clr = vtkColorSeries()
lkup = vtkLookupTable()
# Color the contours with a qualitative color scheme:
clr.SetColorScheme(vtkColorSeries.BREWER_QUALITATIVE_DARK2)
clr.BuildLookupTable(lkup, vtkColorSeries.CATEGORICAL);
lkup.SetAnnotation(vtkVariant(0), 'Cell Low')
lkup.SetAnnotation(vtkVariant(1), 'Somewhat Low')
lkup.SetAnnotation(vtkVariant(2), 'Medium')
lkup.SetAnnotation(vtkVariant(3), 'High')
m1.SetScalarModeToUseCellFieldData()
m1.SelectColorArray('SrcCellNum')
m1.SetLookupTable(lkup)
self.ri.Initialize()
cam = self.rr.GetActiveCamera()
cam.SetPosition(16.429826228, -5.64575247779, 12.7186363446)
cam.SetFocalPoint(4.12105459591, 1.95201869763, 1.69574200166)
cam.SetViewUp(-0.503606926552, 0.337767269532, 0.795168746344)
# wri = vtkXMLUnstructuredGridWriter()
# wri.SetInputConnection(ugg.GetOutputPort())
# wri.SetDataModeToAscii()
# wri.SetFileName('/tmp/surface.vtu')
# wri.Write()
self.rw.Render()
image = 'LagrangeGeometricOperations-Boundary.png'
#events = self.prepareTestImage(self.ri, filename=os.path.join('/tmp', image))
Testing.compareImage(self.rw, self.pathToValidatedOutput(image))
# Testing.interact()
@unittest.skipIf(renderWindowTooSmall(), 'Cannot render at requested size')
def testClip(self):
# Color the cells with a qualitative color scheme:
clr = vtkColorSeries()
lkup = vtkLookupTable()
clr.SetColorScheme(vtkColorSeries.BREWER_QUALITATIVE_DARK2)
clr.BuildLookupTable(lkup, vtkColorSeries.CATEGORICAL);
lkup.SetAnnotation(vtkVariant(0), 'First cell')
lkup.SetAnnotation(vtkVariant(1), 'Second cell')
## Clip
pln = vtkPlane()
pln.SetOrigin(4, 2, 2)
pln.SetNormal(-0.28735, -0.67728, 0.67728)
clp = vtkClipDataSet()
clp.SetInputConnection(self.rdr.GetOutputPort())
clp.SetClipFunction(pln)
# clp.InsideOutOn()
# clp.GenerateClipScalarsOn()
clp.Update()
# wri = vtkXMLUnstructuredGridWriter()
# wri.SetFileName('/tmp/clip.vtu')
# wri.SetInputDataObject(0, clp.GetOutputDataObject(0))
# wri.SetDataModeToAscii()
# wri.Write()
# Add the clipped data to the scene:
a1, m1 = self.addToScene(clp)
m1.SetScalarModeToUseCellFieldData()
m1.SelectColorArray('SrcCellNum')
m1.SetLookupTable(lkup)
## Surface actor
a2, m2 = self.addSurfaceToScene()
m2.SetScalarModeToUseCellFieldData()
m2.SelectColorArray('SrcCellNum')
m2.SetLookupTable(lkup)
self.ri.Initialize()
cam = self.rr.GetActiveCamera()
cam.SetPosition(16.0784261776, 11.8079343039, -6.69074553411)
cam.SetFocalPoint(4.54685488135, 1.74152986486, 2.38091647662)
cam.SetViewUp(-0.523934540522, 0.81705750638, 0.240644194852)
self.rw.Render()
image = 'LagrangeGeometricOperations-Clip.png'
# events = self.prepareTestImage(self.ri, filename=os.path.join('/tmp', image))
Testing.compareImage(self.rw, self.pathToValidatedOutput(image))
# Testing.interact()
# ri.Start()
@unittest.skipIf(renderWindowTooSmall(), 'Cannot render at requested size')
def testCut(self):
# Color the cells with a qualitative color scheme:
clr = vtkColorSeries()
lkup = vtkLookupTable()
clr.SetColorScheme(vtkColorSeries.BREWER_QUALITATIVE_DARK2)
clr.BuildLookupTable(lkup, vtkColorSeries.CATEGORICAL);
lkup.SetAnnotation(vtkVariant(0), 'First cell')
lkup.SetAnnotation(vtkVariant(1), 'Second cell')
## Cuts
pln = vtkPlane()
pln.SetOrigin(4, 2, 2)
pln.SetNormal(-0.28735, -0.67728, 0.67728)
cut = vtkCutter()
cut.SetInputConnection(self.rdr.GetOutputPort())
cut.SetCutFunction(pln)
cut.Update()
#wri = vtkXMLPolyDataWriter()
#wri.SetFileName('/tmp/cut.vtp')
#wri.SetInputDataObject(0, cut.GetOutputDataObject(0))
#wri.SetDataModeToAscii()
#wri.Write()
# Add the cut to the scene:
a1, m1 = self.addToScene(cut)
m1.SetScalarModeToUseCellFieldData()
m1.SelectColorArray('SrcCellNum')
m1.SetLookupTable(lkup)
## Surface actor
a2, m2 = self.addSurfaceToScene()
# m2.SetScalarModeToUseCellFieldData()
# m2.SelectColorArray('SrcCellNum')
# m2.SetLookupTable(lkup)
self.ri.Initialize()
cam = self.rr.GetActiveCamera()
cam.SetPosition(16.0784261776, 11.8079343039, -6.69074553411)
cam.SetFocalPoint(4.54685488135, 1.74152986486, 2.38091647662)
cam.SetViewUp(-0.523934540522, 0.81705750638, 0.240644194852)
self.rw.Render()
image = 'LagrangeGeometricOperations-Cut.png'
# events = self.prepareTestImage(self.ri, filename=os.path.join('/tmp', image))
Testing.compareImage(self.rw, self.pathToValidatedOutput(image))
# Testing.interact()
@unittest.skipIf(numpyMissing, 'Numpy unavailable')
@unittest.skipIf(renderWindowTooSmall(), 'Cannot render at requested size')
def testIntersectWithLine(self):
import numpy as np
rn = vtkMinimalStandardRandomSequence()
## Choose some random lines and intersect them with our cells
def rnums(N, vmin, vmax):
result = []
delta = vmax - vmin
for i in range(N):
result.append(rn.GetValue() * delta + vmin)
rn.Next()
return result
# p1 = list(zip(rnums(10, -4, 8), rnums(10, -4, 4), rnums(10, -4, 4)))
# p2 = list(zip(rnums(10, 0, 12), rnums(10, 0, 8), rnums(10, 0, 8)))
p1 = [ \
(-4, 2, 2), (2, -4, 2), (2, 2, -4), (0.125, 0.125, 4.125), (8.125, 0.125, 4.125), \
(0.125, 0.125, 0.125), (7.875, 3.875, 3.875), \
] + list(zip(rnums(1000, -4, 8), rnums(1000, -4, 4), rnums(1000, -4, 4)))
p2 = [ \
(12, 2, 2), (2, 8, 2), (2, 2, 8), (3.45, 0.125, 4.125), (3.65, 0.125, 4.125), \
(4.8, 4.3, 4.3), (3.3, -0.5, -0.5),
] + list(zip(rnums(1000, 0, 12), rnums(1000, 0, 8), rnums(1000, 0, 8)))
lca = vtkCellArray()
lpt = vtkPoints()
nli = len(p1)
[lpt.InsertNextPoint(x) for x in p1]
[lpt.InsertNextPoint(x) for x in p2]
[lca.InsertNextCell(2, [i, nli + i]) for i in range(nli)]
lpd = vtkPolyData()
lpd.SetPoints(lpt)
lpd.SetLines(lca)
# tub = vtkTubeFilter()
# tub.SetInputDataObject(0, lpd)
# tub.SetVaryRadiusToVaryRadiusOff()
# tub.SetRadius(0.025)
# tub.SetCapping(1)
# tub.SetNumberOfSides(16)
# al, ml = self.addToScene(tub)
# al.GetProperty().SetColor(0.5, 0.5, 0.5)
ug = self.rdr.GetOutputDataObject(0)
from vtkmodules.vtkCommonCore import mutable
tt = mutable(0)
subId = mutable(-1)
xx = [0,0,0]
rr = [0,0,0]
ipt = vtkPoints()
ica = vtkCellArray()
rst = [vtkDoubleArray(), vtkDoubleArray(), vtkDoubleArray()]
pname = ['R', 'S', 'T']
[rst[i].SetName(pname[i]) for i in range(3)]
for cidx in range(ug.GetNumberOfCells()):
cell = ug.GetCell(cidx)
order = [cell.GetOrder(i) for i in range(cell.GetCellDimension())]
npts = 1
for o in order:
npts = npts * (o + 1)
weights = np.zeros((npts,1));
# print('Cell {:1}'.format(cidx))
for pp in range(len(p1)):
# print(' Line {p1} -- {p2}'.format(p1=p1[pp], p2=p2[pp]))
done = False
xp1 = np.array(p1[pp], dtype=np.float64)
xp2 = np.array(p2[pp], dtype=np.float64)
while not done:
done = not cell.IntersectWithLine(xp1, xp2, 1e-8, tt, xx, rr, subId)
# print(' Hit: {hit} @{t} posn {posn} param {rr} subId {subId}'.format( \
# hit=not done, t=tt.get(), posn=xx, rr=rr, subId=subId.get()))
if not done:
pid = [ipt.InsertNextPoint(xx)]
ica.InsertNextCell(1, pid)
[rst[i].InsertNextTuple([rr[i],]) for i in range(3)]
delta = xp2 - xp1
mag = np.sqrt(np.sum(delta * delta))
# Note: we use the single-precision epsilon below because
# some arithmetic in IntersectWithLine appears to be
# done at low precision or with a large tolerance.
xp1 = np.array(xx) + (delta / mag) * np.finfo(np.float32).eps
ipd = vtkPolyData()
ipd.SetPoints(ipt)
ipd.SetVerts(ica)
[ipd.GetPointData().AddArray(rst[i]) for i in range(3)]
print('{N} vertices to glyph'.format(N=ipd.GetNumberOfCells()))
gly = vtkGlyph3D()
ssc = vtkSphereSource()
gly.SetSourceConnection(ssc.GetOutputPort())
gly.SetInputDataObject(0, ipd)
gly.SetScaleFactor(0.15)
gly.FillCellDataOn()
ai, mi = self.addToScene(gly)
# ai.GetProperty().SetColor(0.8, 0.3, 0.3)
clr = vtkColorSeries()
lkup = vtkLookupTable()
clr.SetColorScheme(vtkColorSeries.BREWER_SEQUENTIAL_BLUE_PURPLE_9)
clr.BuildLookupTable(lkup, vtkColorSeries.ORDINAL);
lkup.SetRange(0,1)
mi.SetScalarModeToUseCellFieldData()
mi.SelectColorArray('R')
mi.SetLookupTable(lkup)
#wri = vtkXMLPolyDataWriter()
#wri.SetFileName('/tmp/s2.vtp')
#gly.Update()
#wri.SetInputDataObject(0, gly.GetOutputDataObject(0))
#wri.SetDataModeToAscii()
#wri.Write()
## Surface actor
a2, m2 = self.addSurfaceToScene(1)
a3, m3 = self.addSurfaceToScene(1)
a3.GetProperty().SetRepresentationToWireframe()
## Render test scene
self.ri.Initialize()
cam = self.rr.GetActiveCamera()
# cam.SetPosition(4.14824823557, -15.3201939164, 7.48529277914)
# cam.SetFocalPoint(4.0392921746, 2.25197875899, 1.59174422348)
# cam.SetViewUp(-0.00880943634729, 0.317921564576, 0.948076090095)
cam.SetPosition(14.9792978813, -9.28884906174, 13.1673942646)
cam.SetFocalPoint(3.76340069188, 2.13047224356, 1.73084897464)
cam.SetViewUp(-0.0714929546473, 0.669898141926, 0.739002866625)
self.rr.ResetCameraClippingRange()
for color in ['R', 'S', 'T']:
mi.SelectColorArray(color)
self.rw.Render()
image = 'LagrangeGeometricOperations-Stab{c}.png'.format(c=color)
# events = self.prepareTestImage(self.ri, filename=os.path.join('/tmp', image))
Testing.compareImage(self.rw, self.pathToValidatedOutput(image))
if __name__ == "__main__":
Testing.main([(LagrangeGeometricOperations, 'test')])
|