1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkDataSetSurfaceFilter
* @brief Extracts outer surface (as vtkPolyData) of any dataset
*
* vtkDataSetSurfaceFilter is a general-purpose filter to extract boundary
* geometry (and associated data) from any type of dataset. Geometry is
* obtained as follows: all 0D, 1D, and 2D cells are extracted. All 2D faces
* that are used by only one 3D cell (i.e., boundary faces) are
* extracted. The filter will handle any type of dataset, including
* unstructured grids with non-linear cells. (See also vtkGeometryFilter for
* additional documentation and information - vtkGeometryFilter is the
* preferred filter to use in most cases and may be deprecated in the
* future.)
*
* The filter only has only a few options: methods for passing through
* point and cell ids (to support picking); and controls for nonlinear cell
* subdivision. At this time vtkDataSetSurfaceFilter has the distinction of
* being able to process non-linear cells requiring subdivision. For this
* reason, vtkDataSetSurfaceFilter should be used with non-linear cells;
* otherwise vtkGeometryFilter should be used. (Note: by default this filter
* will delegate processing of linear vtkUnstructuredGrids to
* vtkGeometryFilter as vtkGeometryFilter is so much faster. And
* vtkGeometryFilter will delegate to vtkDataSetSurfaceFilter when it
* encounters nonlinear cells.)
*
* @section FastMode Fast Mode
*
* vtkDataSetSurfaceFilter is sometimes used to simply render a 3D
* dataset. In which case we only are concerned about an approximate
* representation of the data and not necessarily the true exterior surface. In
* that case, simply set the FastMode flag to true.
*
* Currently FastMode is used when extracting surface from a structured dataset
* or when `Delegation` is true. When Delegation is true, the flag is passed on
* to `vtkGeometryFilter` (see `vtkGeometryFilter:SetFastMode`).
*
* @warning
* At one time, vtkDataSetSurfaceFilter was a faster version of
* vtkGeometryFilter when processing unstructured grids, however
* vtkGeometryFilter is now faster. Also, vtkDataSetSurfaceFilter typically
* uses more memory than vtkGeometryFilter. Consequently as a convenience to
* the user, vtkDataSetSurfaceFilter will delegate to vtkGeometryFilter when
* processing linear vtkUnstructuredGrids. This typically produces a 5-10x
* speed up. (See vtkGeometryFilter for more information.) This delegation can
* be disabled by setting the Delegation data member.
*
* @warning
* vtkDataSetSurfaceFilter will generally not preserve topological
* connectivity. In other words, the output polygonal primitives may not be
* connected although in the originating dataset the boundary entities (e.g.,
* faces) may have been connected. This can result in issues for filters that
* expect proper topological connectivity (e.g., vtkQuadricDecimation or
* vtkFeatureEdges).
*
* @warning
* A key step in this algorithm (for 3D cells) is to count the number times a
* face is used by a cell. If used only once, then the face is considered a
* boundary face and sent to the filter output. The filter determines this by
* creating a hash table of faces: faces that are placed into the hash table
* a single time are used only once, and therefore sent to the output. Thus
* large amounts of extra memory is necessary to build the hash table. This
* obsoleted approach requires a significant amount of memory, and is a
* significant bottleneck to threading.
*
* @warning
* This filter may create duplicate points. Unlike vtkGeometryFilter, it does
* not have the option to merge points. However it will eliminate points
* not used by any output polygonal primitive (i.e., not on the boundary).
*
* @sa
* vtkGeometryFilter vtkStructuredGridGeometryFilter
*/
#ifndef vtkDataSetSurfaceFilter_h
#define vtkDataSetSurfaceFilter_h
#include "vtkFiltersGeometryModule.h" // For export macro
#include "vtkGeometryFilter.h" // To facilitate delegation
#include "vtkPolyDataAlgorithm.h"
VTK_ABI_NAMESPACE_BEGIN
template <typename ArrayType>
class vtkSmartPointer;
class vtkPointData;
class vtkPoints;
class vtkIdTypeArray;
class vtkImageData;
class vtkRectilinearGrid;
class vtkStructuredGrid;
class vtkUnstructuredGridBase;
// Helper structure for hashing faces.
struct vtkFastGeomQuadStruct
{
struct vtkFastGeomQuadStruct* Next;
vtkIdType SourceId;
int numPts;
vtkIdType* ptArray;
};
typedef struct vtkFastGeomQuadStruct vtkFastGeomQuad;
class VTKFILTERSGEOMETRY_EXPORT vtkDataSetSurfaceFilter : public vtkPolyDataAlgorithm
{
public:
///@{
/**
* Statndard methods for object instantiation, type information, and printing.
*/
static vtkDataSetSurfaceFilter* New();
vtkTypeMacro(vtkDataSetSurfaceFilter, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
///@{
/**
* If PieceInvariant is true, vtkDataSetSurfaceFilter requests
* 1 ghost level from input in order to remove internal surface
* that are between processes. False by default.
*/
vtkSetMacro(PieceInvariant, int);
vtkGetMacro(PieceInvariant, int);
///@}
///@{
/**
* If on, the output polygonal dataset will have a celldata array that
* holds the cell index of the original 3D cell that produced each output
* cell. This is useful for cell picking. The default is off to conserve
* memory.
*/
vtkSetMacro(PassThroughCellIds, vtkTypeBool);
vtkGetMacro(PassThroughCellIds, vtkTypeBool);
vtkBooleanMacro(PassThroughCellIds, vtkTypeBool);
vtkSetMacro(PassThroughPointIds, vtkTypeBool);
vtkGetMacro(PassThroughPointIds, vtkTypeBool);
vtkBooleanMacro(PassThroughPointIds, vtkTypeBool);
///@}
///@{
/**
* Turn on/off fast mode execution. If enabled, fast mode typically runs
* much faster (2-3x) than the standard algorithm, however the output is an
* approximation to the correct result. Also, note that the FastMode
* depends on the data member Degree for its execution.
*/
vtkSetMacro(FastMode, bool);
vtkGetMacro(FastMode, bool);
vtkBooleanMacro(FastMode, bool);
///@}
///@{
/**
* If PassThroughCellIds or PassThroughPointIds is on, then these ivars
* control the name given to the field in which the ids are written into. If
* set to nullptr, then vtkOriginalCellIds or vtkOriginalPointIds (the default)
* is used, respectively.
*/
vtkSetStringMacro(OriginalCellIdsName);
virtual const char* GetOriginalCellIdsName()
{
return (this->OriginalCellIdsName ? this->OriginalCellIdsName : "vtkOriginalCellIds");
}
vtkSetStringMacro(OriginalPointIdsName);
virtual const char* GetOriginalPointIdsName()
{
return (this->OriginalPointIdsName ? this->OriginalPointIdsName : "vtkOriginalPointIds");
}
///@}
///@{
/**
* If the input is an unstructured grid with nonlinear faces, this parameter
* determines how many times the face is subdivided into linear faces. If 0,
* the output is the equivalent of its linear counterpart (and the midpoints
* determining the nonlinear interpolation are discarded). If 1 (the
* default), the nonlinear face is triangulated based on the midpoints. If
* greater than 1, the triangulated pieces are recursively subdivided to reach
* the desired subdivision. Setting the value to greater than 1 may cause
* some point data to not be passed even if no nonlinear faces exist. This
* option has no effect if the input is not an unstructured grid.
*/
vtkSetMacro(NonlinearSubdivisionLevel, int);
vtkGetMacro(NonlinearSubdivisionLevel, int);
///@}
///@{
/**
* When two volumetric cells of different order are connected by their corners (for instance, a
* quadratic hexahedron next to a linear hexahedron ), the internal face is rendered and is not
* considered as a ghost cell. To remove these faces, switch MatchBoundariesIgnoringCellOrder to 1
* (default is 0).
*/
vtkSetMacro(MatchBoundariesIgnoringCellOrder, int);
vtkGetMacro(MatchBoundariesIgnoringCellOrder, int);
///@}
///@{
/**
* Disable the interpolation for nonlinear cells when not needed.
*/
vtkSetMacro(AllowInterpolation, vtkTypeBool);
vtkGetMacro(AllowInterpolation, vtkTypeBool);
vtkBooleanMacro(AllowInterpolation, vtkTypeBool);
///@}
///@{
/**
* Disable delegation to an internal vtkGeometryFilter. The geometry filter runs
* much faster (especially for unstructured grids); however the two filters
* produce slightly different output. Hence by default delegation is disabled.
*/
vtkSetMacro(Delegation, vtkTypeBool);
vtkGetMacro(Delegation, vtkTypeBool);
vtkBooleanMacro(Delegation, vtkTypeBool);
///@}
///@{
/**
* Direct access methods so that this class can be used as an
* algorithm without using it as a filter (i.e., no pipeline updates).
*/
virtual int StructuredExecute(
vtkDataSet* input, vtkPolyData* output, vtkIdType* ext, vtkIdType* wholeExt);
#ifdef VTK_USE_64BIT_IDS
virtual int StructuredExecute(
vtkDataSet* input, vtkPolyData* output, const int* ext32, const int* wholeExt32)
{
vtkIdType ext[6];
vtkIdType wholeExt[6];
for (int cc = 0; cc < 6; cc++)
{
ext[cc] = ext32[cc];
wholeExt[cc] = wholeExt32[cc];
}
return this->StructuredExecute(input, output, ext, wholeExt);
}
#endif
/**
* Execute the filter on \a input and store the result in \a output.
* The correct function should be used accordingly to the type of the input.
*
* Input can be any subclass of \a vtkUnstructuredGridBase.
* In case of a \a vtkUnstructuredGrid or subclass instance, an optimized version
* of the filter is executed.
*/
virtual int UnstructuredGridExecute(vtkDataSet* input, vtkPolyData* output);
///@{
/**
* Execute the filter on \a input and store the result in \a output.
* The correct function should be used accordingly to the type of the input.
*/
virtual int DataSetExecute(vtkDataSet* input, vtkPolyData* output);
virtual int UniformGridExecute(vtkDataSet* input, vtkPolyData* output, vtkIdType* ext,
vtkIdType* wholeExt, bool extractface[6]);
///@}
/**
* Optimized \a UnstructuredGridExecute function for vtkUnstructuredGrid and subclass instances
* only. This function is used in vtkGeometryFilter.
*/
int UnstructuredGridExecute(
vtkDataSet* input, vtkPolyData* output, vtkGeometryFilterHelper* info);
#ifdef VTK_USE_64BIT_IDS
virtual int UniformGridExecute(vtkDataSet* input, vtkPolyData* output, const int* ext32,
const int* wholeExt32, bool extractface[6])
{
vtkIdType ext[6];
vtkIdType wholeExt[6];
for (int cc = 0; cc < 6; cc++)
{
ext[cc] = ext32[cc];
wholeExt[cc] = wholeExt32[cc];
}
return this->UniformGridExecute(input, output, ext, wholeExt, extractface);
}
#endif
///@}
protected:
vtkDataSetSurfaceFilter();
~vtkDataSetSurfaceFilter() override;
int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int FillInputPortInformation(int port, vtkInformation* info) override;
// Helper methods.
/**
* Estimates the total number of points & cells on the surface to render
* ext -- the extent of the structured data in question (in)
* wholeExt -- the global extent of the structured data (in)
* numPoints -- the estimated number of points (out)
* numCells -- the estimated number of cells (out)
*/
void EstimateStructuredDataArraySizes(
vtkIdType* ext, vtkIdType* wholeExt, vtkIdType& numPoints, vtkIdType& numCells);
void ExecuteFaceQuads(vtkDataSet* input, vtkPolyData* output, int maxFlag, vtkIdType* ext,
int aAxis, int bAxis, int cAxis, vtkIdType* wholeExt, bool checkVisibility);
void ExecuteFaceQuads(vtkDataSet* input, vtkPolyData* output, int maxFlag, vtkIdType* ext,
int aAxis, int bAxis, int cAxis, vtkIdType* wholeExt);
void InitializeQuadHash(vtkIdType numPoints);
void DeleteQuadHash();
virtual void InsertQuadInHash(
vtkIdType a, vtkIdType b, vtkIdType c, vtkIdType d, vtkIdType sourceId);
virtual void InsertTriInHash(
vtkIdType a, vtkIdType b, vtkIdType c, vtkIdType sourceId, vtkIdType faceId = -1);
virtual void InsertPolygonInHash(const vtkIdType* ids, int numpts, vtkIdType sourceId);
void InitQuadHashTraversal();
vtkFastGeomQuad* GetNextVisibleQuadFromHash();
vtkFastGeomQuad** QuadHash;
vtkIdType QuadHashLength;
vtkFastGeomQuad* QuadHashTraversal;
vtkIdType QuadHashTraversalIndex;
vtkIdType* PointMap;
vtkIdType GetOutputPointId(
vtkIdType inPtId, vtkDataSet* input, vtkPoints* outPts, vtkPointData* outPD);
class vtkEdgeInterpolationMap;
vtkEdgeInterpolationMap* EdgeMap;
vtkIdType GetInterpolatedPointId(vtkIdType edgePtA, vtkIdType edgePtB, vtkDataSet* input,
vtkCell* cell, double* pcoords, double* weights, vtkPoints* outPts, vtkPointData* outPD);
vtkIdType GetInterpolatedPointId(vtkDataSet* input, vtkCell* cell, double pcoords[3],
double* weights, vtkPoints* outPts, vtkPointData* outPD);
vtkIdType NumberOfNewCells;
// Better memory allocation for faces (hash)
void InitFastGeomQuadAllocation(vtkIdType numberOfCells);
vtkFastGeomQuad* NewFastGeomQuad(int numPts);
void DeleteAllFastGeomQuads();
// -----
vtkIdType FastGeomQuadArrayLength;
vtkIdType NumberOfFastGeomQuadArrays;
unsigned char** FastGeomQuadArrays; // store this data as an array of bytes
// These indexes allow us to find the next available face.
vtkIdType NextArrayIndex;
vtkIdType NextQuadIndex;
int PieceInvariant;
vtkTypeBool PassThroughCellIds;
void RecordOrigCellId(vtkIdType newIndex, vtkIdType origId);
virtual void RecordOrigCellId(vtkIdType newIndex, vtkFastGeomQuad* quad);
vtkIdTypeArray* OriginalCellIds;
char* OriginalCellIdsName;
vtkTypeBool PassThroughPointIds;
void RecordOrigPointId(vtkIdType newIndex, vtkIdType origId);
vtkIdTypeArray* OriginalPointIds;
char* OriginalPointIdsName;
int NonlinearSubdivisionLevel;
int MatchBoundariesIgnoringCellOrder;
vtkTypeBool AllowInterpolation;
vtkTypeBool Delegation;
bool FastMode;
private:
int UnstructuredGridBaseExecute(vtkDataSet* input, vtkPolyData* output);
int UnstructuredGridExecuteInternal(
vtkUnstructuredGridBase* input, vtkPolyData* output, bool handleSubdivision);
int StructuredExecuteNoBlanking(
vtkDataSet* input, vtkPolyData* output, vtkIdType* ext, vtkIdType* wholeExt);
vtkIdType GetOutputPointIdAndInterpolate(vtkIdType inPtId, vtkDataSet* input, vtkCell* cell,
double* pc, double* weights, vtkPoints* outPts, vtkPointData* outPD);
vtkDataSetSurfaceFilter(const vtkDataSetSurfaceFilter&) = delete;
void operator=(const vtkDataSetSurfaceFilter&) = delete;
};
VTK_ABI_NAMESPACE_END
#endif
|