1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
* @class vtkGeometryFilter
* @brief extract boundary geometry from dataset (or convert data to polygonal type)
*
* vtkGeometryFilter is a general-purpose filter to extract dataset boundary
* geometry, topology, and associated attribute data from any type of
* dataset. Geometry is obtained as follows: all 0D, 1D, and 2D cells are
* extracted. All 2D faces that are used by only one 3D cell (i.e., boundary
* faces) are extracted. It also is possible to specify conditions on point
* ids, cell ids, and on a bounding box (referred to as "Extent") to control
* the extraction process. This point and cell id- and extent-based clipping
* is a powerful way to "see inside" datasets; however it may impact
* performance significantly.
*
* This filter may also be used to convert any type of data to polygonal
* type. This is particularly useful for surface rendering. The conversion
* process may be less than satisfactory for some 3D datasets. For example,
* this filter will extract the outer surface of a volume or structured grid
* dataset (if point, cell, and extent clipping is disabled). (For structured
* data you may want to use vtkImageDataGeometryFilter,
* vtkStructuredGridGeometryFilter, vtkExtractUnstructuredGrid,
* vtkRectilinearGridGeometryFilter, or vtkExtractVOI.)
*
* Another important feature of vtkGeometryFilter is that it preserves
* topological connectivity. This enables filters that depend on correct
* connectivity (e.g., vtkQuadricDecimation, vtkFeatureEdges, etc.) to
* operate properly . It is possible to label the output polydata with an
* originating cell (PassThroughCellIds) or point id (PassThroughPointIds).
* The output precision of created points (if they need to be created) can
* also be specified.
*
* Finally, this filter takes an optional second, vtkPolyData input. This
* input represents a list of faces that are to be excluded from the output
* of vtkGeometryFilter.
*
* @warning
* While vtkGeometryFilter and vtkDataSetSurfaceFilter perform similar operations,
* there are important differences as follows:
* 1. vtkGeometryFilter can preserve (using RemoveGhostInterfaces) topological connectivity.
* vtkDataSetSurfaceFilter produces output primitives which may be disconnected from one another.
* 2. vtkGeometryFilter can generate output based on cell ids, point ids, and/or
* extent (bounding box) clipping. vtkDataSetSurfaceFilter strictly extracts
* the boundary surface of a dataset.
* 3. vtkGeometryFilter is much faster than vtkDataSetSurfaceFilter, because it's
* multi-threaded. As a result, vtkDataSetSurfaceFilter will delegate the processing
* of linear unstructured grids to vtkGeometryFilter.
* 4. vtkGeometryFilter can (currently) only handle linear cells. The filter
* will delegate to vtkDataSetSurfaceFilter for higher-order cells. (This
* is a historical artifact and may be rectified in the future.)
*
* @warning
* If point merging (MergingOff) is disabled, the filter will (if possible)
* use the input points and point attributes. This can result in a lot of
* unused points in the output, at some gain in filter performance. If
* enabled, point merging will generate only new points that are used by the
* output polydata cells.
*
* @warning
* This class is templated. It may run slower than serial execution if the code
* is not optimized during compilation. Build in Release or ReleaseWithDebugInfo.
*
* @warning
* This class has been threaded with vtkSMPTools. Using TBB or other
* non-sequential type (set in the CMake variable
* VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
*
* @sa
* vtkDataSetSurfaceFilter vtkImageDataGeometryFilter
* vtkStructuredGridGeometryFilter vtkExtractGeometry vtkExtractVOI
* vtkMarkBoundaryFilter vtkRemovePolyData
*/
#ifndef vtkGeometryFilter_h
#define vtkGeometryFilter_h
#include "vtkFiltersGeometryModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"
#include <array> // For std::array
VTK_ABI_NAMESPACE_BEGIN
class vtkIncrementalPointLocator;
class vtkStructuredGrid;
class vtkUnstructuredGridBase;
class vtkGeometryFilter;
class vtkDataSetSurfaceFilter;
struct vtkGeometryFilterHelper;
// Used to coordinate delegation to vtkDataSetSurfaceFilter
struct VTKFILTERSGEOMETRY_EXPORT vtkGeometryFilterHelper
{
enum CellType
{
VERTS = 0,
LINES = 1,
POLYS = 2,
STRIPS = 3,
OTHER_LINEAR_CELLS = 4,
NON_LINEAR_CELLS = 5,
NUM_CELL_TYPES
};
using CellTypesInformation = std::array<bool, NUM_CELL_TYPES>;
CellTypesInformation CellTypesInfo;
unsigned char IsLinear;
static vtkGeometryFilterHelper* CharacterizeUnstructuredGrid(vtkUnstructuredGridBase*);
static void CopyFilterParams(vtkGeometryFilter* gf, vtkDataSetSurfaceFilter* dssf);
static void CopyFilterParams(vtkDataSetSurfaceFilter* dssf, vtkGeometryFilter* gf);
bool HasOnlyVerts()
{
return this->CellTypesInfo[VERTS] && !this->CellTypesInfo[LINES] &&
!this->CellTypesInfo[POLYS] && !this->CellTypesInfo[STRIPS] &&
!this->CellTypesInfo[OTHER_LINEAR_CELLS] && !this->CellTypesInfo[NON_LINEAR_CELLS];
}
bool HasOnlyLines()
{
return !this->CellTypesInfo[VERTS] && this->CellTypesInfo[LINES] &&
!this->CellTypesInfo[POLYS] && !this->CellTypesInfo[STRIPS] &&
!this->CellTypesInfo[OTHER_LINEAR_CELLS] && !this->CellTypesInfo[NON_LINEAR_CELLS];
}
bool HasOnlyPolys()
{
return !this->CellTypesInfo[VERTS] && !this->CellTypesInfo[LINES] &&
this->CellTypesInfo[POLYS] && !this->CellTypesInfo[STRIPS] &&
!this->CellTypesInfo[OTHER_LINEAR_CELLS] && !this->CellTypesInfo[NON_LINEAR_CELLS];
}
bool HasOnlyStrips()
{
return !this->CellTypesInfo[VERTS] && !this->CellTypesInfo[LINES] &&
!this->CellTypesInfo[POLYS] && this->CellTypesInfo[STRIPS] &&
!this->CellTypesInfo[OTHER_LINEAR_CELLS] && !this->CellTypesInfo[NON_LINEAR_CELLS];
}
};
class VTKFILTERSGEOMETRY_EXPORT vtkGeometryFilter : public vtkPolyDataAlgorithm
{
public:
///@{
/**
* Standard methods for instantiation, type information, and printing.
*/
static vtkGeometryFilter* New();
vtkTypeMacro(vtkGeometryFilter, vtkPolyDataAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent) override;
///@}
///@{
/**
* Turn on/off selection of geometry by point id.
*/
vtkSetMacro(PointClipping, bool);
vtkGetMacro(PointClipping, bool);
vtkBooleanMacro(PointClipping, bool);
///@}
///@{
/**
* Turn on/off selection of geometry by cell id.
*/
vtkSetMacro(CellClipping, bool);
vtkGetMacro(CellClipping, bool);
vtkBooleanMacro(CellClipping, bool);
///@}
///@{
/**
* Turn on/off selection of geometry via bounding box.
*/
vtkSetMacro(ExtentClipping, bool);
vtkGetMacro(ExtentClipping, bool);
vtkBooleanMacro(ExtentClipping, bool);
///@}
///@{
/**
* Specify the minimum point id for point id selection.
*/
vtkSetClampMacro(PointMinimum, vtkIdType, 0, VTK_ID_MAX);
vtkGetMacro(PointMinimum, vtkIdType);
///@}
///@{
/**
* Specify the maximum point id for point id selection.
*/
vtkSetClampMacro(PointMaximum, vtkIdType, 0, VTK_ID_MAX);
vtkGetMacro(PointMaximum, vtkIdType);
///@}
///@{
/**
* Specify the minimum cell id for point id selection.
*/
vtkSetClampMacro(CellMinimum, vtkIdType, 0, VTK_ID_MAX);
vtkGetMacro(CellMinimum, vtkIdType);
///@}
///@{
/**
* Specify the maximum cell id for point id selection.
*/
vtkSetClampMacro(CellMaximum, vtkIdType, 0, VTK_ID_MAX);
vtkGetMacro(CellMaximum, vtkIdType);
///@}
/**
* Specify a (xmin,xmax, ymin,ymax, zmin,zmax) bounding box to clip data.
*/
void SetExtent(double xMin, double xMax, double yMin, double yMax, double zMin, double zMax);
///@{
/**
* Set / get a (xmin,xmax, ymin,ymax, zmin,zmax) bounding box to clip data.
*/
void SetExtent(double extent[6]);
double* GetExtent() VTK_SIZEHINT(6) { return this->Extent; }
///@}
///@{
/**
* Turn on/off merging of points. This will reduce the number of output
* points, at some cost to performance. If Merging is off, then if possible
* (i.e., if the point representation is explicit), the filter will reuse
* the input points to create the output polydata. Certain input dataset
* types (with implicit point representations) will always create new
* points (effectively performing a merge operation).
*/
vtkSetMacro(Merging, bool);
vtkGetMacro(Merging, bool);
vtkBooleanMacro(Merging, bool);
///@}
///@{
/**
* Set/get the desired precision for the output types. See the
* documentation for the vtkAlgorithm::DesiredOutputPrecision enum for an
* explanation of the available precision settings. This only applies for
* data types where we create points (merging) as opposed to passing them
* from input to output, such as unstructured grids.
*/
void SetOutputPointsPrecision(int precision);
int GetOutputPointsPrecision() const;
///@}
///@{
/**
* Turn on/off fast mode execution. If enabled, fast mode typically runs
* much faster (2-3x) than the standard algorithm, however the output is an
* approximation to the correct result. FastMode is only meaningful when
* the input is vtkImageData/vtkRectilinearGrid/vtkStructuredGrid and there
* are blank cells.
*/
vtkSetMacro(FastMode, bool);
vtkGetMacro(FastMode, bool);
vtkBooleanMacro(FastMode, bool);
///@}
// The following are methods compatible with vtkDataSetSurfaceFilter.
///@{
/**
* If PieceInvariant is true, vtkGeometryFilter requests
* 1 ghost level from input in order to remove internal surface
* that are between processes. False by default.
*/
vtkSetMacro(PieceInvariant, int);
vtkGetMacro(PieceInvariant, int);
///@}
///@{
/**
* This parameter drives the generation or not of a CellData array for the output
* polygonal dataset that holds the cell index of the original 3D cell that produced
* each output cell. This is useful for cell picking. The default is off to conserve memory.
*
* Note: Use SetOriginalCellIdsName() to set the name of the CellData array.
*/
vtkSetMacro(PassThroughCellIds, vtkTypeBool);
vtkGetMacro(PassThroughCellIds, vtkTypeBool);
vtkBooleanMacro(PassThroughCellIds, vtkTypeBool);
///@}
///@{
/**
* This parameter drives the generation or not of a PointData array for the output
* polygonal dataset that holds the cell/point index of the original point that produced
* each output point. This is useful for point picking. The default is off to conserve memory.
*
* Note: Use SetOriginalPointIdsName() to set the name of the PointData array.
*/
vtkSetMacro(PassThroughPointIds, vtkTypeBool);
vtkGetMacro(PassThroughPointIds, vtkTypeBool);
vtkBooleanMacro(PassThroughPointIds, vtkTypeBool);
///@}
///@{
/**
* If PassThroughCellIds or PassThroughPointIds is on, then these ivars
* control the name given to the field in which the ids are written into. If
* set to nullptr, then vtkOriginalCellIds or vtkOriginalPointIds (the default)
* is used, respectively.
*/
vtkSetStringMacro(OriginalCellIdsName);
virtual const char* GetOriginalCellIdsName()
{
return (this->OriginalCellIdsName ? this->OriginalCellIdsName : "vtkOriginalCellIds");
}
vtkSetStringMacro(OriginalPointIdsName);
virtual const char* GetOriginalPointIdsName()
{
return (this->OriginalPointIdsName ? this->OriginalPointIdsName : "vtkOriginalPointIds");
}
///@}
///@{
/**
* If a second, vtkPolyData input is provided, this second input specifies
* a list of faces to be excluded from the output (in the
* vtkPolyData::Polys attribute). This is useful to prevent the same face
* to be output multiple times in complex pipelines. (A candidate output
* boundary face is the same as a face in the excluded face list if it uses
* the same point ids as one of the polygons defined in the second input.) For
* example, a face may be extracted separately via a threshold filter; thus
* this face should not be also extracted via the vtkGeometryFilter. (This
* functionality is related to vtkRemovePolyData.)
*/
void SetExcludedFacesData(vtkPolyData*);
void SetExcludedFacesConnection(vtkAlgorithmOutput* algOutput);
vtkPolyData* GetExcludedFaces();
///@}
///@{
/**
* If the input is an unstructured grid with nonlinear faces, this parameter
* determines how many times the face is subdivided into linear faces. If 0,
* the output is the equivalent of its linear counterpart (and the midpoints
* determining the nonlinear interpolation are discarded). If 1 (the
* default), the nonlinear face is triangulated based on the midpoints. If
* greater than 1, the triangulated pieces are recursively subdivided to reach
* the desired subdivision. Setting the value to greater than 1 may cause
* some point data to not be passed even if no nonlinear faces exist. This
* option has no effect if the input is not an unstructured grid.
*/
vtkSetMacro(NonlinearSubdivisionLevel, int);
vtkGetMacro(NonlinearSubdivisionLevel, int);
///@}
///@{
/**
* When two volumetric cells of different order are connected by their corners (for instance, a
* quadratic hexahedron next to a linear hexahedron ), the internal face is rendered and is not
* considered as a ghost cell. To remove these faces, switch MatchBoundariesIgnoringCellOrder to 1
* (default is 0).
*/
vtkSetMacro(MatchBoundariesIgnoringCellOrder, int);
vtkGetMacro(MatchBoundariesIgnoringCellOrder, int);
///@}
///@{
/**
* Disable delegation to an internal vtkDataSetSurfaceFilter.
*/
vtkSetMacro(Delegation, vtkTypeBool);
vtkGetMacro(Delegation, vtkTypeBool);
vtkBooleanMacro(Delegation, vtkTypeBool);
///@}
///@{
/**
* Set/Get if Ghost interfaces will be removed.
* When you are rendering you want to remove ghost interfaces that originate from duplicate cells.
*
* There are certain algorithms though that need the ghost interfaces, such as GhostCellGenerator
* and FeatureEdges.
*
* Since Rendering is the most common case, the Default is on.
*
* Note: DON'T change it if there are no ghost cells.
*/
vtkSetMacro(RemoveGhostInterfaces, bool);
vtkBooleanMacro(RemoveGhostInterfaces, bool);
vtkGetMacro(RemoveGhostInterfaces, bool);
///@}
///@{
/**
* Direct access methods so that this class can be used as an
* algorithm without using it as a filter (i.e., no pipeline updates).
* Also some internal methods with additional options.
*/
int PolyDataExecute(vtkDataSet* input, vtkPolyData* output, vtkPolyData* exc);
virtual int PolyDataExecute(vtkDataSet*, vtkPolyData*);
int UnstructuredGridExecute(
vtkDataSet* input, vtkPolyData* output, vtkGeometryFilterHelper* info, vtkPolyData* exc);
virtual int UnstructuredGridExecute(vtkDataSet* input, vtkPolyData* output);
int StructuredExecute(vtkDataSet* input, vtkPolyData* output, int* wholeExtent, vtkPolyData* exc,
bool* extractFace = nullptr);
virtual int StructuredExecute(
vtkDataSet* input, vtkPolyData* output, int* wholeExt, bool* extractFace = nullptr);
int DataSetExecute(vtkDataSet* input, vtkPolyData* output, vtkPolyData* exc);
virtual int DataSetExecute(vtkDataSet* input, vtkPolyData* output);
///@}
protected:
vtkGeometryFilter();
~vtkGeometryFilter() override;
int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
int FillInputPortInformation(int port, vtkInformation* info) override;
// special cases for performance
int RequestUpdateExtent(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;
vtkIdType PointMaximum;
vtkIdType PointMinimum;
vtkIdType CellMinimum;
vtkIdType CellMaximum;
double Extent[6];
bool PointClipping;
bool CellClipping;
bool ExtentClipping;
int OutputPointsPrecision;
bool RemoveGhostInterfaces;
bool Merging;
vtkIncrementalPointLocator* Locator;
bool FastMode;
// These methods support compatibility with vtkDataSetSurfaceFilter
int PieceInvariant;
vtkTypeBool PassThroughCellIds;
char* OriginalCellIdsName;
vtkTypeBool PassThroughPointIds;
char* OriginalPointIdsName;
int NonlinearSubdivisionLevel;
int MatchBoundariesIgnoringCellOrder;
vtkTypeBool Delegation;
private:
vtkGeometryFilter(const vtkGeometryFilter&) = delete;
void operator=(const vtkGeometryFilter&) = delete;
};
VTK_ABI_NAMESPACE_END
#endif
|