1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkHyperTreeGridAxisReflection.h"
#include "vtkCellData.h"
#include "vtkDoubleArray.h"
#include "vtkHyperTree.h"
#include "vtkHyperTreeGrid.h"
#include "vtkHyperTreeGridScales.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkUniformHyperTreeGrid.h"
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkHyperTreeGridAxisReflection);
//------------------------------------------------------------------------------
vtkHyperTreeGridAxisReflection::vtkHyperTreeGridAxisReflection()
{
// Default reflection plane is lower X bounding plane
this->Plane = USE_X_MIN;
// Default plane position is at origin
this->Center = 0.;
this->AppropriateOutput = true;
}
//------------------------------------------------------------------------------
vtkHyperTreeGridAxisReflection::~vtkHyperTreeGridAxisReflection() = default;
//------------------------------------------------------------------------------
void vtkHyperTreeGridAxisReflection::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Plane: " << this->Plane << endl;
os << indent << "Center: " << this->Center << endl;
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridAxisReflection::FillOutputPortInformation(int, vtkInformation* info)
{
info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkHyperTreeGrid");
return 1;
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridAxisReflection::ProcessTrees(vtkHyperTreeGrid* input, vtkDataObject* outputDO)
{
// Skip empty inputs
if (input->GetNumberOfLeaves() == 0)
{
return 1;
}
// Downcast output data object to hyper tree grid
vtkHyperTreeGrid* output = vtkHyperTreeGrid::SafeDownCast(outputDO);
if (!output)
{
vtkErrorMacro("Incorrect type of output: " << outputDO->GetClassName());
return 0;
}
// Shallow copy structure of input into output
output->CopyStructure(input);
// Shallow copy data of input into output
this->InData = input->GetCellData();
this->OutData = output->GetCellData();
this->OutData->PassData(this->InData);
// Retrieve reflection direction and coordinates to be reflected
unsigned int direction = 0;
double offset = 0.;
vtkUniformHyperTreeGrid* inputUHTG = vtkUniformHyperTreeGrid::SafeDownCast(input);
vtkUniformHyperTreeGrid* outputUHTG = vtkUniformHyperTreeGrid::SafeDownCast(outputDO);
if (inputUHTG)
{
assert(outputUHTG);
double origin[3];
inputUHTG->GetOrigin(origin);
double scale[3];
inputUHTG->GetGridScale(scale);
unsigned int pmod3 = this->Plane % 3;
if (!pmod3)
{
direction = 0;
}
else if (pmod3 == 1)
{
direction = 1;
}
else
{
direction = 2;
}
// Retrieve size of reflected coordinates array
unsigned int size = inputUHTG->GetCellDims()[direction];
// Compute offset
if (this->Plane < 3)
{
double u = origin[direction];
double v = origin[direction] + size * scale[0];
offset = u < v ? 2. * u : 2. * v;
}
else if (this->Plane < 6)
{
double u = origin[direction];
double v = origin[direction] + size * scale[0];
offset = u > v ? 2. * u : 2. * v;
}
else
{
offset = 2 * this->Center;
}
// Create array for reflected coordinates
// Reflect point coordinate
// Assign new coordinates to appropriate axis
origin[direction] = offset - origin[direction];
scale[direction] = -scale[direction];
outputUHTG->SetOrigin(origin);
outputUHTG->SetGridScale(scale);
}
else
{
vtkDataArray* inCoords = nullptr;
unsigned int pmod3 = this->Plane % 3;
if (!pmod3)
{
direction = 0;
inCoords = input->GetXCoordinates();
}
else if (pmod3 == 1)
{
direction = 1;
inCoords = input->GetYCoordinates();
}
else
{
direction = 2;
inCoords = input->GetZCoordinates();
}
// Retrieve size of reflected coordinates array
unsigned int size = input->GetCellDims()[direction];
// Compute offset
if (this->Plane < 3)
{
double u = inCoords->GetTuple1(0);
double v = inCoords->GetTuple1(size);
offset = u < v ? 2. * u : 2. * v;
}
else if (this->Plane < 6)
{
double u = inCoords->GetTuple1(0);
double v = inCoords->GetTuple1(size);
offset = u > v ? 2. * u : 2. * v;
}
else
{
offset = 2 * this->Center;
}
// Create array for reflected coordinates
++size;
vtkDoubleArray* outCoords = vtkDoubleArray::New();
outCoords->SetNumberOfTuples(size);
// Reflect point coordinate
double coord;
for (unsigned int i = 0; i < size; ++i)
{
coord = inCoords->GetTuple1(i);
outCoords->SetTuple1(i, offset - coord);
} // i
// Assign new coordinates to appropriate axis
switch (direction)
{
case 0:
output->SetXCoordinates(outCoords);
break;
case 1:
output->SetYCoordinates(outCoords);
break;
case 2:
output->SetZCoordinates(outCoords);
} // switch ( direction )
// Clean up
outCoords->Delete();
}
// Retrieve interface arrays if available
vtkDataArray* inNormals = nullptr;
vtkDataArray* inIntercepts = nullptr;
bool hasInterface = input->GetHasInterface();
if (hasInterface)
{
inNormals = this->OutData->GetArray(output->GetInterfaceNormalsName());
inIntercepts = this->OutData->GetArray(output->GetInterfaceInterceptsName());
if (!inNormals || !inIntercepts)
{
vtkWarningMacro(<< "Incomplete material interface data; ignoring it.");
hasInterface = false;
}
}
// Create arrays for reflected interface if present
vtkDoubleArray* outNormals = nullptr;
vtkDoubleArray* outIntercepts = nullptr;
if (hasInterface)
{
vtkIdType nTuples = inNormals->GetNumberOfTuples();
outNormals = vtkDoubleArray::New();
outNormals->SetNumberOfComponents(3);
outNormals->SetNumberOfTuples(nTuples);
outNormals->SetName("outNormals");
output->SetInterfaceNormalsName(outNormals->GetName());
outIntercepts = vtkDoubleArray::New();
outIntercepts->SetNumberOfComponents(3);
outIntercepts->SetNumberOfTuples(nTuples);
outIntercepts->SetName("outIntercepts");
output->SetInterfaceInterceptsName(outIntercepts->GetName());
// Reflect interface normals if present
// Iterate over all cells
for (vtkIdType i = 0; i < nTuples; ++i)
{
// Compute and stored reflected normal
double norm[3];
memcpy(norm, inNormals->GetTuple3(i), 3 * sizeof(double));
norm[direction] = -norm[direction];
outNormals->SetTuple3(i, norm[0], norm[1], norm[2]);
// Compute and store reflected intercept
double* inter = inIntercepts->GetTuple3(i);
inter[0] -= offset * norm[direction];
outIntercepts->SetTuple3(i, inter[0], inter[1], inter[2]);
} // i
// Assign new interface arrays if available
this->OutData->SetVectors(outNormals);
this->OutData->AddArray(outIntercepts);
} // if ( hasInterface )
// Clean up
if (hasInterface)
{
outNormals->Delete();
outIntercepts->Delete();
}
// Mise a jour du Scales des HTs
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
output->InitializeTreeIterator(it);
vtkHyperTree* tree = nullptr;
vtkIdType index;
while ((tree = it.GetNextTree(index)))
{
if (this->CheckAbort())
{
break;
}
assert(tree->GetTreeIndex() == index);
double origin[3];
double scale[3];
output->GetLevelZeroOriginAndSizeFromIndex(index, origin, scale);
tree->SetScales(std::make_shared<vtkHyperTreeGridScales>(output->GetBranchFactor(), scale));
}
//
return 1;
}
VTK_ABI_NAMESPACE_END
|