1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkHyperTreeGridContour.h"
#include "vtkArrayDispatch.h"
#include "vtkBitArray.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCellIterator.h"
#include "vtkCompositeArray.h"
#include "vtkContourHelper.h"
#include "vtkContourValues.h"
#include "vtkDoubleArray.h"
#include "vtkGenericCell.h"
#include "vtkHyperTree.h"
#include "vtkHyperTreeGrid.h"
#include "vtkHyperTreeGridNonOrientedCursor.h"
#include "vtkHyperTreeGridNonOrientedGeometryCursor.h"
#include "vtkHyperTreeGridNonOrientedMooreSuperCursor.h"
#include "vtkIdTypeArray.h"
#include "vtkIncrementalPointLocator.h"
#include "vtkIndexedArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkLine.h"
#include "vtkMathUtilities.h"
#include "vtkMergePoints.h"
#include "vtkObjectFactory.h"
#include "vtkPixel.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkPolyhedron.h"
#include "vtkPolyhedronUtilities.h"
#include "vtkUnsignedCharArray.h"
#include "vtkUnstructuredGrid.h"
#include "vtkVoxel.h"
#include <algorithm>
#include <memory>
VTK_ABI_NAMESPACE_BEGIN
namespace
{
const unsigned int MooreCursors1D[2] = { 0, 2 };
const unsigned int MooreCursors2D[8] = { 0, 1, 2, 3, 5, 6, 7, 8 };
const unsigned int MooreCursors3D[26] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26 };
const unsigned int* MooreCursors[3] = {
MooreCursors1D,
MooreCursors2D,
MooreCursors3D,
};
// Conversion table of canonical ids from voxel to polyhedron
constexpr vtkIdType CANONICAL_FACES[24] = { 2, 3, 1, 0, 1, 5, 4, 0, 4, 6, 2, 0, 3, 7, 5, 1, 2, 6, 7,
3, 5, 7, 6, 4 };
constexpr vtkIdType POLY_FACES_NB = 6;
constexpr vtkIdType POLY_FACES_POINTS_NB = 4;
constexpr vtkIdType POLY_POINTS_NB = 8;
constexpr int MAX_NB_OF_CONTOURS = std::numeric_limits<unsigned char>::max() + 1; // 256
// Return true if all faces of the cell are planar.
// The cell is expected to be a vtkVoxel instance.
bool AreAllFacesPlanar(vtkCell* cell)
{
bool allFacesArePlanar = true;
std::array<std::array<double, 3>, POLY_FACES_POINTS_NB> facePoints{};
// For each face
for (int faceId = 0, canonicalId = 0; faceId < ::POLY_FACES_NB; faceId++)
{
// Retrieve face points
for (int i = 0; i < ::POLY_FACES_POINTS_NB; i++, canonicalId++)
{
auto point = cell->GetPoints()->GetPoint(::CANONICAL_FACES[canonicalId]);
facePoints[i][0] = point[0];
facePoints[i][1] = point[1];
facePoints[i][2] = point[2];
}
// Test if 3 vectors of the face are coplanar
std::array<double, 3> v1{};
v1[0] = facePoints[1][0] - facePoints[0][0];
v1[1] = facePoints[1][1] - facePoints[0][1];
v1[2] = facePoints[1][2] - facePoints[0][2];
std::array<double, 3> v2{};
v2[0] = facePoints[2][0] - facePoints[0][0];
v2[1] = facePoints[2][1] - facePoints[0][1];
v2[2] = facePoints[2][2] - facePoints[0][2];
std::array<double, 3> v3{};
v3[0] = facePoints[3][0] - facePoints[0][0];
v3[1] = facePoints[3][1] - facePoints[0][1];
v3[2] = facePoints[3][2] - facePoints[0][2];
double cross[3] = { 0. };
vtkMath::Cross(v1, v2, cross);
if (!vtkMathUtilities::FuzzyCompare(vtkMath::Dot(cross, v3), 0.))
{
allFacesArePlanar = false;
break;
}
}
return allFacesArePlanar;
}
// Given contour values, find a "valid" epsilon value, allowing to discriminate values
// by fuzzy comparison. Returned espilon correspond to the min difference between contour
// values divided by 10.
double FindEpsilon(vtkDataArray* contourValues)
{
vtkIdType numberOfContours = contourValues->GetNumberOfTuples();
if (numberOfContours == 0)
{
vtkErrorWithObjectMacro(nullptr, "No contour values found");
return 0;
}
// Sort contour values
std::vector<double> sortedContourValues;
sortedContourValues.reserve(numberOfContours);
for (int contourId = 0; contourId < numberOfContours; contourId++)
{
sortedContourValues.emplace_back(contourValues->GetTuple1(contourId));
}
std::sort(sortedContourValues.begin(), sortedContourValues.end());
// Find smallest difference between 2 values
double epsilon = std::numeric_limits<double>::max();
double contourValue1 = sortedContourValues[0];
for (int contourId = 1; contourId < numberOfContours; contourId++)
{
double contourValue2 = sortedContourValues[contourId];
double difference = contourValue2 - contourValue1;
contourValue1 = contourValue2; // For next iteration
// Avoid duplicated contour values (compare using std::numeric_limits<double>::epsilon)
if (vtkMathUtilities::FuzzyCompare(difference, 0.))
{
continue;
}
if (difference < epsilon)
{
epsilon = difference;
}
}
// Ensure there is no overlap by dividing min diff by 10
return epsilon * 0.1;
}
// Given the contour array and the contour values, generate handles by associating
// each value of contourArray to its corresponding index in contourValues
vtkSmartPointer<vtkUnsignedCharArray> GenerateHandles(
vtkDataArray* contourArray, vtkDataArray* contourValues)
{
vtkIdType nbOfPoints = contourArray->GetNumberOfTuples();
vtkIdType numberOfContours = contourValues->GetNumberOfTuples();
// Initialize handles
vtkNew<vtkUnsignedCharArray> handles;
handles->SetNumberOfComponents(1);
handles->SetNumberOfTuples(nbOfPoints);
// numberOfContours plays the role of id pointing to the default value
// that will be used if no contourValue index is found
handles->Fill(numberOfContours);
double epsilon = ::FindEpsilon(contourValues);
for (vtkIdType pointId = 0; pointId < nbOfPoints; pointId++)
{
int contourId = 0;
for (; contourId < numberOfContours; contourId++)
{
if (vtkMathUtilities::FuzzyCompare(
contourArray->GetTuple1(pointId), contourValues->GetTuple1(contourId), epsilon))
{
handles->SetValue(pointId, contourId);
break;
}
}
if (contourId == numberOfContours)
{
vtkErrorWithObjectMacro(nullptr,
"Unable to retrieve contour value for point " << pointId << " with value "
<< contourArray->GetTuple1(pointId));
}
}
return handles;
}
// Given the contour array, the contour values and the output attributes,
// replace the contour array found in the attributes by an implicit array.
struct ConvertToIndexedArrayWorker
{
template <typename ArrayType>
void operator()(ArrayType* contourArray, vtkContourValues* contourValues,
vtkDataSetAttributes* outputAttributes) const
{
vtkIdType nbOfPoints = contourArray->GetNumberOfTuples();
int numberOfContours = contourValues->GetNumberOfContours();
using ValueType = vtk::GetAPIType<ArrayType>;
// Fill values indexed by handles
vtkNew<ArrayType> valuesArray;
valuesArray->SetNumberOfComponents(1);
valuesArray->SetNumberOfTuples(numberOfContours);
for (int i = 0; i < numberOfContours; i++)
{
ValueType newVal = 0;
vtkMath::RoundDoubleToIntegralIfNecessary(contourValues->GetValue(i), &newVal);
valuesArray->SetValue(i, newVal);
}
// Fill handles
vtkSmartPointer<vtkUnsignedCharArray> handles = ::GenerateHandles(contourArray, valuesArray);
// Create array carrying the fallback default value
vtkNew<ArrayType> defaultValueArray;
defaultValueArray->SetNumberOfComponents(1);
defaultValueArray->SetNumberOfTuples(1);
if (defaultValueArray->GetDataType() == VTK_FLOAT ||
defaultValueArray->GetDataType() == VTK_DOUBLE)
{
defaultValueArray->SetValue(0, vtkMath::Nan());
}
else
{
defaultValueArray->SetValue(0, 0);
}
// Create composite array (indexed values + default value)
std::vector<vtkDataArray*> arrays({ valuesArray, defaultValueArray });
vtkNew<vtkCompositeArray<ValueType>> compositeArr;
compositeArr->SetBackend(std::make_shared<vtkCompositeImplicitBackend<ValueType>>(arrays));
compositeArr->SetNumberOfComponents(1);
// Allocate one more tuple to store the default value
compositeArr->SetNumberOfTuples(valuesArray->GetNumberOfTuples() + 1);
// Create indexed array from handles and composite array
auto contourArrayName = contourArray->GetName();
vtkNew<vtkIndexedArray<ValueType>> indexedArray;
indexedArray->SetBackend(
std::make_shared<vtkIndexedImplicitBackend<ValueType>>(handles, compositeArr));
indexedArray->SetNumberOfComponents(1);
indexedArray->SetNumberOfTuples(nbOfPoints);
indexedArray->SetName(contourArrayName);
// Replace the interpolated contour values by indexed ones
outputAttributes->RemoveArray(contourArrayName);
outputAttributes->AddArray(indexedArray);
}
};
// Given the contour array name, the contour values and the output attributes,
// replace the contour array found in the attributes by an indexed array.
// If there are less than 256 contour values:
// - store these values in a new array, removing duplicates
// - use a vtkUnsignedCharArray to index these values (handles)
// If there is strictly more than 256 contour values, this function will do nothing.
void ReplaceWithIndexedArray(const std::string& contourArrayName, vtkContourValues* contourValues,
vtkDataSetAttributes* outputAttributes)
{
int numberOfContours = contourValues->GetNumberOfContours();
if (numberOfContours > MAX_NB_OF_CONTOURS) // 256
{
vtkDebugWithObjectMacro(nullptr,
"There are more than " << MAX_NB_OF_CONTOURS << " values in contourValues. "
<< "ReplaceWithIndexedArray will do nothing.");
return;
}
if (!outputAttributes)
{
vtkErrorWithObjectMacro(nullptr, "Unable to retrieve output attributes");
return;
}
auto contourArray =
vtkDataArray::SafeDownCast(outputAttributes->GetAbstractArray(contourArrayName.c_str()));
if (!contourArray)
{
vtkErrorWithObjectMacro(
nullptr, "Unable to retrieve contour array " << contourArrayName << " from input attributes");
return;
}
using Dispatcher = vtkArrayDispatch::DispatchByValueType<vtkArrayDispatch::AllTypes>;
::ConvertToIndexedArrayWorker worker;
// Dispatch
if (!Dispatcher::Execute(contourArray, worker, contourValues, outputAttributes))
{
vtkErrorWithObjectMacro(nullptr, "Unable to dispatch the contour array " << contourArrayName);
}
}
}
//------------------------------------------------------------------------------
struct vtkHyperTreeGridContour::vtkInternals
{
// Temporary data structures related to USE_DECOMPOSED_POLYHEDRA strategy
vtkNew<vtkCellArray> Faces;
vtkNew<vtkPolyhedron> Polyhedron;
vtkNew<vtkGenericCell> Tetra;
vtkNew<vtkDoubleArray> TetraScalars;
};
//------------------------------------------------------------------------------
vtkStandardNewMacro(vtkHyperTreeGridContour);
//------------------------------------------------------------------------------
vtkHyperTreeGridContour::vtkHyperTreeGridContour()
: Internals(new vtkHyperTreeGridContour::vtkInternals())
{
// Initialize storage for contour values
this->ContourValues = vtkContourValues::New();
// Initialize locator to null
this->Locator = nullptr;
// Initialize list of selected cells
this->SelectedCells = nullptr;
// Initialize per-cell quantities of interest
this->CellSigns = nullptr;
this->CellScalars = nullptr;
// Initialize structures for isocontouring
this->Helper = nullptr;
this->Leaves = vtkIdList::New();
this->Line = vtkLine::New();
this->Pixel = vtkPixel::New();
this->Voxel = vtkVoxel::New();
// Output indices begin at 0
this->CurrentId = 0;
// Process active point scalars by default
this->SetInputArrayToProcess(
0, 0, 0, vtkDataObject::FIELD_ASSOCIATION_POINTS_THEN_CELLS, vtkDataSetAttributes::SCALARS);
// Input scalars point to null by default
this->InScalars = nullptr;
// Initialize temporal structures related to USE_DECOMPOSED_POLYHEDRA strategy
this->Internals->Polyhedron->GetPointIds()->SetNumberOfIds(::POLY_POINTS_NB);
this->Internals->Polyhedron->GetPoints()->SetNumberOfPoints(::POLY_POINTS_NB);
this->Internals->Faces->AllocateExact(::POLY_FACES_NB, ::POLY_FACES_POINTS_NB * ::POLY_FACES_NB);
}
//------------------------------------------------------------------------------
vtkHyperTreeGridContour::~vtkHyperTreeGridContour()
{
if (this->ContourValues)
{
this->ContourValues->Delete();
this->ContourValues = nullptr;
}
if (this->Locator)
{
this->Locator->Delete();
this->Locator = nullptr;
}
if (this->Line)
{
this->Line->Delete();
this->Line = nullptr;
}
if (this->Pixel)
{
this->Pixel->Delete();
this->Pixel = nullptr;
}
if (this->Voxel)
{
this->Voxel->Delete();
this->Voxel = nullptr;
}
if (this->Leaves)
{
this->Leaves->Delete();
this->Leaves = nullptr;
}
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridContour::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
this->ContourValues->PrintSelf(os, indent.GetNextIndent());
os << indent << "CurrentId: " << this->CurrentId << endl;
if (this->InScalars)
{
os << indent << "InScalars:\n";
this->InScalars->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "InScalars: ( none )\n";
}
if (this->Locator)
{
os << indent << "Locator: " << this->Locator << "\n";
}
else
{
os << indent << "Locator: (none)\n";
}
if (this->Line)
{
os << indent << ": " << this->Line << "\n";
}
else
{
os << indent << ": (none)\n";
}
if (this->Pixel)
{
os << indent << ": " << this->Pixel << "\n";
}
else
{
os << indent << ": (none)\n";
}
if (this->Voxel)
{
os << indent << ": " << this->Voxel << "\n";
}
else
{
os << indent << ": (none)\n";
}
if (this->Leaves)
{
os << indent << ": " << this->Leaves << "\n";
}
else
{
os << indent << ": (none)\n";
}
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridContour::FillOutputPortInformation(int, vtkInformation* info)
{
info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkPolyData");
return 1;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridContour::SetLocator(vtkIncrementalPointLocator* locator)
{
// Check if proposed locator is identical to existing one
if (this->Locator == locator)
{
return;
}
// Clean up existing locator instance variable
if (this->Locator)
{
this->Locator->Delete();
this->Locator = nullptr;
}
// Register proposed locator and assign it
if (locator)
{
locator->Register(this);
}
this->Locator = locator;
// Modify time
this->Modified();
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridContour::CreateDefaultLocator()
{
// If no locator instance variable create a merge point one
if (!this->Locator)
{
this->Locator = vtkMergePoints::New();
this->Locator->Register(this);
this->Locator->Delete();
}
}
//------------------------------------------------------------------------------
vtkMTimeType vtkHyperTreeGridContour::GetMTime()
{
vtkMTimeType mTime = this->Superclass::GetMTime();
vtkMTimeType time;
if (this->ContourValues)
{
time = this->ContourValues->GetMTime();
mTime = (time > mTime ? time : mTime);
}
if (this->Locator)
{
time = this->Locator->GetMTime();
mTime = (time > mTime ? time : mTime);
}
return mTime;
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridContour::ProcessTrees(vtkHyperTreeGrid* input, vtkDataObject* outputDO)
{
// Downcast output data object to polygonal data set
vtkPolyData* output = vtkPolyData::SafeDownCast(outputDO);
if (!output)
{
vtkErrorMacro("Incorrect type of output: " << outputDO->GetClassName());
return 0;
}
// Retrieve scalar quantity of interest
this->InScalars = this->GetInputArrayToProcess(0, input);
if (!this->InScalars)
{
vtkWarningMacro(<< "No scalar data to contour");
return 1;
}
// Initialize output point data
this->InData = input->GetCellData();
this->OutData = output->GetPointData();
this->OutData->CopyAllocate(this->InData);
// Output indices begin at 0
this->CurrentId = 0;
// Retrieve material mask
this->InMask = input->HasMask() ? input->GetMask() : nullptr;
// Retrieve ghost cells
this->InGhostArray = input->GetGhostCells();
// Estimate output size as a multiple of 1024
vtkIdType numCells = input->GetNumberOfCells();
vtkIdType numContours = this->ContourValues->GetNumberOfContours();
vtkIdType estimatedSize = static_cast<vtkIdType>(pow(static_cast<double>(numCells), .75));
estimatedSize *= numContours;
estimatedSize = estimatedSize / 1024 * 1024;
if (estimatedSize < 1024)
{
estimatedSize = 1024;
}
// Create storage for output points
vtkPoints* newPts = vtkPoints::New();
newPts->Allocate(estimatedSize, estimatedSize);
// Create storage for output vertices
vtkNew<vtkCellArray> newVerts;
newVerts->AllocateExact(estimatedSize, estimatedSize);
// Create storage for output lines
vtkNew<vtkCellArray> newLines;
newLines->AllocateExact(estimatedSize, estimatedSize);
// Create storage for output polygons
vtkNew<vtkCellArray> newPolys;
newPolys->AllocateExact(estimatedSize, estimatedSize);
// Create storage for output scalar values
this->CellScalars = this->InScalars->NewInstance();
this->CellScalars->SetNumberOfComponents(this->InScalars->GetNumberOfComponents());
this->CellScalars->Allocate(this->CellScalars->GetNumberOfComponents() * 8);
// Initialize point locator
if (!this->Locator)
{
// Create default locator if needed
this->CreateDefaultLocator();
}
this->Locator->InitPointInsertion(newPts, input->GetBounds(), estimatedSize);
// Used to store the input cell data (hyper tree grid cells)
// as point data (dual mesh point data), the two being equivalent.
vtkNew<vtkPointData> dualPointData;
dualPointData->PassData(input->GetCellData());
// Instantiate a contour helper for convenience, with triangle generation on
this->Helper = new vtkContourHelper(this->Locator, newVerts, newLines, newPolys, dualPointData,
nullptr, output->GetPointData(), nullptr, estimatedSize, true);
// Create storage to keep track of selected cells
this->SelectedCells = vtkBitArray::New();
this->SelectedCells->SetNumberOfTuples(numCells);
// Initialize storage for signs and values
// NOLINTNEXTLINE(bugprone-sizeof-expression)
this->CellSigns = (vtkBitArray**)malloc(numContours * sizeof(*this->CellSigns));
this->Signs.resize(numContours, true);
for (int c = 0; c < numContours; ++c)
{
this->CellSigns[c] = vtkBitArray::New();
this->CellSigns[c]->SetNumberOfTuples(numCells);
}
// First pass across tree roots to evince cells intersected by contours
vtkIdType index;
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
input->InitializeTreeIterator(it);
vtkNew<vtkHyperTreeGridNonOrientedCursor> cursor;
while (it.GetNextTree(index))
{
if (this->CheckAbort())
{
break;
}
// Initialize new grid cursor at root of current input tree
input->InitializeNonOrientedCursor(cursor, index);
// Pre-process tree recursively
this->RecursivelyPreProcessTree(cursor);
} // it
// Second pass across tree roots: now compute isocontours recursively
input->InitializeTreeIterator(it);
vtkNew<vtkHyperTreeGridNonOrientedMooreSuperCursor> supercursor;
while (it.GetNextTree(index))
{
if (this->CheckAbort())
{
break;
}
// Initialize new Moore cursor at root of current tree
input->InitializeNonOrientedMooreSuperCursor(supercursor, index);
// Compute contours recursively
this->RecursivelyProcessTree(supercursor, newVerts, newLines, newPolys, dualPointData);
} // it
// Set output
output->SetPoints(newPts);
if (newVerts->GetNumberOfCells())
{
output->SetVerts(newVerts);
}
if (newLines->GetNumberOfCells())
{
output->SetLines(newLines);
}
if (newPolys->GetNumberOfCells())
{
output->SetPolys(newPolys);
}
// Replace values from contour with implicit array if needed
if (this->UseImplicitArrays && numContours <= 256)
{
const std::string contourValuesArrayName = this->InScalars->GetName();
::ReplaceWithIndexedArray(contourValuesArrayName, this->ContourValues, output->GetPointData());
}
// Clean up
this->SelectedCells->Delete();
for (vtkIdType c = 0; c < this->GetNumberOfContours(); ++c)
{
if (this->CellSigns[c])
{
this->CellSigns[c]->Delete();
}
} // c
free(this->CellSigns);
delete this->Helper;
this->CellScalars->Delete();
newPts->Delete();
this->Locator->Initialize();
// Squeeze output
output->Squeeze();
return 1;
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridContour::RecursivelyPreProcessTree(vtkHyperTreeGridNonOrientedCursor* cursor)
{
// Retrieve global index of input cursor
vtkIdType id = cursor->GetGlobalNodeIndex();
if (this->InGhostArray && this->InGhostArray->GetTuple1(id))
{
return false;
}
// Retrieve number of contours
vtkIdType numContours = this->ContourValues->GetNumberOfContours();
// Descend further into input trees only if cursor is not a leaf
bool selected = false;
if (!cursor->IsLeaf() && !cursor->IsMasked())
{
// Cursor is not at leaf, recurse to all all children
int numChildren = cursor->GetNumberOfChildren();
std::vector<bool> signs(numContours);
for (int child = 0; child < numChildren; ++child)
{
if (this->CheckAbort())
{
break;
}
// Create storage for signs relative to contour values
cursor->ToChild(child);
// Recurse and keep track of whether this branch is selected
selected |= this->RecursivelyPreProcessTree(cursor);
// Check if branch not completely selected
if (!selected)
{
// If not, update contour values
for (int c = 0; c < numContours; ++c)
{
// Retrieve global index of child
vtkIdType childId = cursor->GetGlobalNodeIndex();
// Compute and store selection flags for current contour
if (child == 0)
{
// Initialize sign array with sign of first child
signs[c] = (this->CellSigns[c]->GetTuple1(childId) != 0.0);
}
else
{
// For subsequent children compare their sign with stored value
if (signs[c] != (this->CellSigns[c]->GetTuple1(childId) != 0.0))
{
// A change of sign occurred, therefore cell must selected
selected = true;
}
} // else
} // c
} // if( ! selected )
cursor->ToParent();
} // child
}
else if (!this->InGhostArray || !this->InGhostArray->GetTuple1(id))
{
// Cursor is at leaf, retrieve its active scalar value
double val = this->InScalars->GetTuple1(id);
// Iterate over all contours
double* values = this->ContourValues->GetValues();
for (int c = 0; c < numContours; ++c)
{
this->Signs[c] = val > values[c];
}
} // else
// Update list of selected cells
this->SelectedCells->SetTuple1(id, selected);
// Set signs for all contours
for (int c = 0; c < numContours; ++c)
{
// Parent cell has that of one of its children
this->CellSigns[c]->SetTuple1(id, this->Signs[c]);
}
// Return whether current node was fully selected
return selected;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridContour::RecursivelyProcessTree(
vtkHyperTreeGridNonOrientedMooreSuperCursor* supercursor, vtkCellArray* newVerts,
vtkCellArray* newLines, vtkCellArray* newPolys, vtkPointData* inPd)
{
// Retrieve global index of input cursor
vtkIdType id = supercursor->GetGlobalNodeIndex();
if (this->InGhostArray && this->InGhostArray->GetTuple1(id))
{
return;
}
// Retrieve dimensionality
unsigned int dim = supercursor->GetDimension();
// Descend further into input trees only if cursor is not a leaf
if (!supercursor->IsLeaf())
{
// Selected cells are determined in RecursivelyPreProcessTree
bool selected = (this->SelectedCells->GetTuple1(id) == 1.0);
// Iterate over contours
for (vtkIdType c = 0; c < this->ContourValues->GetNumberOfContours() && !selected; ++c)
{
// Retrieve sign with respect to contour value at current cursor
bool sign = (this->CellSigns[c]->GetTuple1(id) != 0.0);
// Iterate over all cursors of Moore neighborhood around center
unsigned int nn = supercursor->GetNumberOfCursors() - 1;
for (unsigned int neighbor = 0; neighbor < nn && !selected; ++neighbor)
{
// Retrieve global index of neighbor
unsigned int icursorN = MooreCursors[dim - 1][neighbor];
if (supercursor->HasTree(icursorN))
{
vtkIdType idN = supercursor->GetGlobalNodeIndex(icursorN);
// Decide whether neighbor was selected or must be retained because of a sign change
selected = this->SelectedCells->GetTuple1(idN) == 1 ||
((this->CellSigns[c]->GetTuple1(idN) != 0.0) != sign) ||
(this->InGhostArray && this->InGhostArray->GetTuple1(idN));
}
else
{
selected = false;
}
} // neighbor
} // c
if (selected && !supercursor->IsMasked())
{
// Node has at least one neighbor containing one contour, recurse to all children
unsigned int numChildren = supercursor->GetNumberOfChildren();
for (unsigned int child = 0; child < numChildren; ++child)
{
// Create child cursor from parent in input grid
supercursor->ToChild(child);
// Recurse
this->RecursivelyProcessTree(supercursor, newVerts, newLines, newPolys, inPd);
supercursor->ToParent();
}
}
}
else if ((!this->InMask || !this->InMask->GetTuple1(id)))
{
// Cell is not masked, iterate over its corners
unsigned int numLeavesCorners = 1 << dim;
for (unsigned int cornerIdx = 0; cornerIdx < numLeavesCorners; ++cornerIdx)
{
bool owner = true;
this->Leaves->SetNumberOfIds(numLeavesCorners);
// Iterate over every leaf touching the corner and check ownership
for (unsigned int leafIdx = 0; leafIdx < numLeavesCorners && owner; ++leafIdx)
{
owner = supercursor->GetCornerCursors(cornerIdx, leafIdx, this->Leaves);
} // leafIdx
// If cell owns dual cell, compute contours thereof
if (owner)
{
vtkIdType numContours = this->ContourValues->GetNumberOfContours();
double* values = this->ContourValues->GetValues();
/* Generate contour topology depending on dimensionality
* XXX: please note that the generated dual vtkPixel / vtkVoxel do not meet the criteria
* defined in their respective classes (orthogonal quadrilaterals / parallelepipeds) and
* seems only used here for convenience (reasons needs to be determined explicitly).
*/
vtkCell* cell = nullptr;
switch (dim)
{
case 1:
cell = this->Line;
break;
case 2:
cell = this->Pixel;
break;
case 3:
cell = this->Voxel;
break;
default:
vtkErrorMacro("Unsupported cell dimension had been encountered (must be 1, 2 or 3).");
return;
} // switch ( dim )
// Iterate over cell corners
double x[3];
supercursor->GetPoint(x);
for (unsigned int _cornerIdx = 0; _cornerIdx < numLeavesCorners; ++_cornerIdx)
{
// Get cursor corresponding to this corner
vtkIdType cursorId = this->Leaves->GetId(_cornerIdx);
// Retrieve neighbor coordinates and store them
supercursor->GetPoint(cursorId, x);
cell->Points->SetPoint(_cornerIdx, x);
// Retrieve neighbor index and add to list of cell vertices
vtkIdType idN = supercursor->GetGlobalNodeIndex(cursorId);
cell->PointIds->SetId(_cornerIdx, idN);
// Assign scalar value attached to this contour item
this->CellScalars->InsertTuple(_cornerIdx, this->InScalars->GetTuple(idN));
} // cornerIdx
/* If we are in 3D and the contour strategy is set to USE_DECOMPOSED_POLYHEDRA,
* convert each voxel to polyhedron, decompose them and apply the contour on
* resulting tetrahedrons to give better results in the concave case.
* XXX: Here we assume that voxels are valid when converting them to polyhedrons.
* Highly degenerated voxels (faces having duplicated points) will lead to degenerated
* polyhedrons. However the computation of the contour after the decomposition seems to
* be insensitive to this issue for now (edge cases are still possible and should be
* reported if encountered).
*/
if (this->Strategy3D == USE_DECOMPOSED_POLYHEDRA && dim == 3 && !::AreAllFacesPlanar(cell))
{
// Insert points and global point IDs
for (int i = 0; i < ::POLY_POINTS_NB; ++i)
{
this->Internals->Polyhedron->GetPointIds()->SetId(i, cell->GetPointId(i));
this->Internals->Polyhedron->GetPoints()->SetPoint(i, cell->GetPoints()->GetPoint(i));
}
// Construct faces from voxel point ids (global ids)
this->Internals->Faces->Reset();
for (int faceId = 0, canonicalId = 0; faceId < ::POLY_FACES_NB; faceId++)
{
this->Internals->Faces->InsertNextCell(::POLY_FACES_POINTS_NB);
for (int i = 0; i < ::POLY_FACES_POINTS_NB; i++, canonicalId++)
{
this->Internals->Faces->InsertCellPoint(
cell->GetPointId(::CANONICAL_FACES[canonicalId]));
}
}
this->Internals->Polyhedron->SetCellFaces(this->Internals->Faces);
this->Internals->Polyhedron->Initialize();
// Decompose the this->Internals->Polyhedron
auto resultUG = vtkPolyhedronUtilities::Decompose(
this->Internals->Polyhedron, inPd, this->CurrentId, nullptr);
auto outPointData = vtkPointData::SafeDownCast(this->OutData);
if (!outPointData)
{
vtkErrorMacro("Unable to retrieve the output point data.");
return;
}
/* Estimated size: estimated number of generated triangles (before merging them).
* Only used in that case. Unused here because we choose to output triangles.
*/
constexpr int estimatedSize = 0;
/* Instantiate a new contour helper
* Needed because we have to change the input point data (now indexed on resultUG point
* ids)
*/
vtkContourHelper helper(this->Locator, newVerts, newLines, newPolys,
resultUG->GetPointData(), nullptr, outPointData, nullptr, estimatedSize, true);
// Retrieve the contouring array in the resultUG
auto contourScalars = resultUG->GetPointData()->GetArray(this->InScalars->GetName());
if (!contourScalars)
{
vtkErrorMacro(
"Unable to find the scalars used for contouring in decomposed dual cell.");
return;
}
// Compute polyhedron isocontour for each isovalue
for (int c = 0; c < numContours; ++c)
{
// Iterate on each tetrahedron of resultUG
vtkSmartPointer<vtkCellIterator> iter;
iter.TakeReference(resultUG->NewCellIterator());
for (iter->InitTraversal(); !iter->IsDoneWithTraversal(); iter->GoToNextCell())
{
iter->GetCell(this->Internals->Tetra);
// Scalars used for contouring need to be indexed on tetrahedron local ids
this->Internals->TetraScalars->Reset();
this->Internals->TetraScalars->SetNumberOfComponents(
contourScalars->GetNumberOfComponents());
this->Internals->TetraScalars->SetNumberOfTuples(iter->GetNumberOfPoints());
contourScalars->GetTuples(iter->GetPointIds(), this->Internals->TetraScalars);
vtkIdType cellId = iter->GetCellId();
helper.Contour(
this->Internals->Tetra, values[c], this->Internals->TetraScalars, cellId);
}
}
}
else // USE_VOXELS || dim != 3
{
// Compute cell isocontour for each isovalue
for (int c = 0; c < numContours; ++c)
{
this->Helper->Contour(cell, values[c], this->CellScalars, this->CurrentId);
}
}
// Increment output cell counter
++this->CurrentId;
} // if ( owner )
} // cornerIdx
} // else if ( ! this->InMask || this->InMask->GetTuple1( id ) )
}
VTK_ABI_NAMESPACE_END
|