1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkHyperTreeGridGeometry3DImpl.h"
#include "vtkBitArray.h"
#include "vtkCellArray.h"
#include "vtkDataSetAttributes.h"
#include "vtkHyperTreeGrid.h"
#include "vtkHyperTreeGridNonOrientedVonNeumannSuperCursor.h"
#include "vtkMathUtilities.h"
#include "vtkMergePoints.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkUnsignedCharArray.h"
#include <set>
#include <vector>
VTK_ABI_NAMESPACE_BEGIN
namespace
{
constexpr unsigned int NUMBER_OF_POINTS = 8;
constexpr unsigned int NUMBER_OF_EDGES = 12;
constexpr unsigned int MAX_NUMBER_OF_INTERFACE_EDGES = 8;
// Point Ids for each face of a cell
constexpr unsigned int FACE_PTS_IDS[6][4] = { { 0, 1, 3, 2 }, { 0, 4, 5, 1 }, { 0, 2, 6, 4 },
{ 1, 3, 7, 5 }, { 2, 6, 7, 3 }, { 4, 5, 7, 6 } };
// Edge Ids for each face of a cell
constexpr unsigned int FACE_EDGES_IDS[6][4] = { { 1, 5, 3, 0 }, { 0, 4, 8, 2 }, { 2, 9, 6, 1 },
{ 3, 7, 10, 4 }, { 6, 11, 7, 5 }, { 8, 10, 11, 9 } };
// Point Ids for each edge of a cell
const std::vector<std::pair<unsigned int, unsigned int>> EDGE_PTS_IDS = { { 0, 1 } /* 0 */,
{ 0, 2 } /* 1 */, { 0, 4 } /* 2 */, { 1, 3 } /* 3 */, { 1, 5 } /* 4 */, { 2, 3 } /* 5 */,
{ 2, 6 } /* 6 */, { 3, 7 } /* 7 */, { 4, 5 } /* 8 */, { 4, 6 } /* 9 */, { 5, 7 } /* 10 */,
{ 6, 7 } /* 11 */ };
// Orientation axis for each edge of a cell
// 0:X, 1:Y, 2:Z
constexpr unsigned int EDGE_AXIS[12] = { 0, 1, 2, 1, 2, 0, 2, 2, 0, 1, 1, 0 };
// Flag used to indicate to treat all faces of a coarse cell
// All bytes are set to 1 : all faces should be considered
constexpr unsigned char TREAT_ALL_FACES = std::numeric_limits<unsigned char>::max();
// Neighbor ids of the VonNeumann cursor
constexpr unsigned int VON_NEUMANN_NEIGH_ID[] = { 0, 1, 2, 4, 5, 6 };
// Orientation (normal of the plane) for each face of a cell : 0:YZ, 1:XZ, 2:XY
constexpr unsigned int FACE_ORIENTATION[] = { 2, 1, 0, 0, 1, 2 };
// Indicate if an offset (cell size) should be applied for a given face
// Concerns the faces that do not share the cell origin
constexpr unsigned int FACE_OFFSET[] = { 0, 0, 0, 1, 1, 1 };
// Arbitrary default edge index
// Should be superior to 12, i.e. the number of edges of a given cell
const unsigned int VTK_DEFAULT_EDGE_INDEX = 42;
}
//------------------------------------------------------------------------------
struct vtkHyperTreeGridGeometry3DImpl::HTG3DPoint
{
double Coords[3] = { 0., 0., 0. };
bool IsValid = false;
vtkIdType Id = -1;
bool HasInterfaceA = false;
bool HasInterfaceB = false;
double DistanceToInterfaceA = 0.;
double DistanceToInterfaceB = 0.;
};
//------------------------------------------------------------------------------
vtkHyperTreeGridGeometry3DImpl::vtkHyperTreeGridGeometry3DImpl(bool mergePoints,
vtkHyperTreeGrid* input, vtkPoints* outPoints, vtkCellArray* outCells,
vtkDataSetAttributes* inCellDataAttributes, vtkDataSetAttributes* outCellDataAttributes,
bool passThroughCellIds, const std::string& originalCellIdArrayName, bool fillMaterial)
: vtkHyperTreeGridGeometryImpl(input, outPoints, outCells, inCellDataAttributes,
outCellDataAttributes, passThroughCellIds, originalCellIdArrayName, fillMaterial)
{
if (mergePoints)
{
this->Locator = vtkSmartPointer<vtkMergePoints>::New();
this->Locator->InitPointInsertion(outPoints, input->GetBounds());
}
this->BranchFactor = static_cast<int>(this->Input->GetBranchFactor());
this->InPureMaskArray = this->Input->GetPureMask();
}
//----------------------------------------------------------------------------------------------
vtkHyperTreeGridGeometry3DImpl::~vtkHyperTreeGridGeometry3DImpl() = default;
//----------------------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::GenerateGeometry()
{
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
this->Input->InitializeTreeIterator(it);
vtkIdType hyperTreeId;
vtkNew<vtkHyperTreeGridNonOrientedVonNeumannSuperCursor> cursor;
// Recursively process all HyperTrees
while (it.GetNextTree(hyperTreeId))
{
this->Input->InitializeNonOrientedVonNeumannSuperCursor(cursor, hyperTreeId);
this->RecursivelyProcessTree(cursor, ::TREAT_ALL_FACES);
}
}
//----------------------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::RecursivelyProcessTree(
vtkHyperTreeGridNonOrientedVonNeumannSuperCursor* cursor,
unsigned char coarseCellFacesToBeTreated)
{
vtkIdType cellId = cursor->GetGlobalNodeIndex();
// For a given cell, we can generate faces if the cell is a leaf or if the cell is masked
if (cursor->IsLeaf() || this->IsMaskedOrGhost(cellId))
{
// Improvement: coarseCellFacesToBeTreated can also be used there (not used for now)
this->GenerateCellSurface(cursor, coarseCellFacesToBeTreated, cellId);
return;
}
// Case of a pure, non-masked coarse cell (optimisation)
if (this->InPureMaskArray && this->InPureMaskArray->GetValue(cellId) == 0)
{
// All child cells are in the same material, so we can only treat
// the ones at the border of the coarse cell
std::set<int> childList;
std::vector<unsigned char> childCellFacesToBeTreated(cursor->GetNumberOfChildren(), 0);
for (unsigned int f = 0; f < 3; ++f) // dimension
{
for (unsigned int o = 0; o < 2; ++o) // left, center, right
{
int neighborIdx = (2 * o - 1) * (f + 1);
if ((coarseCellFacesToBeTreated & (1 << (3 + neighborIdx))))
{
bool isValidN = cursor->HasTree(3 + neighborIdx);
vtkIdType neighboringCellId = 0;
if (isValidN)
{
neighboringCellId = cursor->GetGlobalNodeIndex(3 + neighborIdx);
}
if (!isValidN || this->InPureMaskArray->GetValue(neighboringCellId))
{
// If the neighboring cells do not exist or are not pure,
// we have border children
int iMin = (f == 0 && o == 1) ? this->BranchFactor - 1 : 0;
int iMax = (f == 0 && o == 0) ? 1 : this->BranchFactor;
int jMin = (f == 1 && o == 1) ? this->BranchFactor - 1 : 0;
int jMax = (f == 1 && o == 0) ? 1 : this->BranchFactor;
int kMin = (f == 2 && o == 1) ? this->BranchFactor - 1 : 0;
int kMax = (f == 2 && o == 0) ? 1 : this->BranchFactor;
for (int i = iMin; i < iMax; ++i)
{
for (int j = jMin; j < jMax; ++j)
{
for (int k = kMin; k < kMax; ++k)
{
unsigned int ichild = i + this->BranchFactor * (j + this->BranchFactor * k);
// We can request a border child cell more than one time,
// once for each of it's "exposed" face
childList.insert(ichild);
childCellFacesToBeTreated[ichild] |= (1 << (3 + neighborIdx));
} // k
} // j
} // i
} // if ...
}
} // o
} // f
for (std::set<int>::iterator it = childList.begin(); it != childList.end(); ++it)
{
cursor->ToChild(*it);
this->RecursivelyProcessTree(cursor, childCellFacesToBeTreated[*it]);
cursor->ToParent();
} // ichild
return;
}
// Search for any child cell that is not present in the coarse cell material
for (unsigned int ichild = 0; ichild < cursor->GetNumberOfChildren(); ++ichild)
{
cursor->ToChild(ichild);
this->RecursivelyProcessTree(cursor, ::TREAT_ALL_FACES);
cursor->ToParent();
}
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::GenerateCellSurface(
vtkHyperTreeGridNonOrientedVonNeumannSuperCursor* cursor,
unsigned char vtkNotUsed(coarseCellFacesToBeTreated), vtkIdType cellId)
{
// Determine if the current cell contains an interface and
// fill the related member variables accordingly
this->ProbeForCellInterface(cellId);
// Retrieve info about the current cell
unsigned level = cursor->GetLevel();
bool masked = cursor->IsMasked();
const double* cellOrigin = cursor->GetOrigin();
const double* cellSize = cursor->GetSize();
std::vector<HTG3DPoint> cellPoints;
cellPoints.resize(NUMBER_OF_POINTS);
std::vector<std::pair<HTG3DPoint, HTG3DPoint>> edgePoints;
edgePoints.resize(NUMBER_OF_EDGES + MAX_NUMBER_OF_INTERFACE_EDGES);
std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>> internalFaceA;
std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>> internalFaceB;
// Iterate over all neighboring cells using the Von Neumann neighborhood
for (unsigned int faceId = 0; faceId < 6; ++faceId)
{
const unsigned int& neighborId = ::VON_NEUMANN_NEIGH_ID[faceId];
const unsigned int& faceOrientation = ::FACE_ORIENTATION[faceId];
const unsigned int& faceOffset = ::FACE_OFFSET[faceId];
// Retrieve cursor to neighbor across face
// Retrieve tree, leaf flag, and mask of neighbor cursor
bool leafN = false;
vtkIdType neighborCellId = 0;
unsigned int levelN = 0;
vtkHyperTree* treeN = cursor->GetInformation(neighborId, levelN, leafN, neighborCellId);
int maskedN = cursor->IsMasked(neighborId);
bool hasInterfaceCellN = this->GetHasInterface(cursor->GetGlobalNodeIndex(neighborId));
// We generate a face if one of the following conditions are fulfilled:
// - The current cell is unmasked, and the neighboring cell is masked
// - The current cell is unmasked, and has no neighbouring cell
// - The current cell is unmasked, and has an interface
// - The current cell is unmasked, and has the neighboring cell has an interface
// - The current cell is masked, and has a neighbor that is a non-masked leaf of lower level
// This ensures that faces between unmasked and masked cells will be generated once and only
// once.
if ((!masked && (!treeN || maskedN || this->HasInterfaceOnThisCell || hasInterfaceCellN)) ||
(masked && treeN && leafN && levelN < level && !maskedN))
{
// Generate face with corresponding normal and offset
// Here we differentiate the case where the current cell is masked.
// In that case, we must copy the data from the neighboring cell to the created face,
// and not from the current cell.
this->GenerateOneCellFace(cellPoints, edgePoints, faceId, (masked ? neighborCellId : cellId),
cellOrigin, cellSize, faceOffset, faceOrientation, internalFaceA, internalFaceB);
}
}
auto createInterfacePoints =
[&](std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>>& interface)
{
if (!interface.empty() && interface.size() >= 3)
{
std::vector<vtkIdType> newOutputPointIds;
unsigned int firstEdge = interface.begin()->first;
if (firstEdge == VTK_DEFAULT_EDGE_INDEX)
{
vtkWarningWithObjectMacro(nullptr, "Uninitialized edge encountered");
return;
}
else
{
HTG3DPoint* pt = interface[firstEdge].first;
newOutputPointIds.emplace_back(pt->Id);
unsigned int next = interface[firstEdge].second;
while (next != firstEdge && next != VTK_DEFAULT_EDGE_INDEX)
{
// XXX: think adding an "emergency" breaking condition to
// avoid potential infinite looping
pt = interface[next].first;
newOutputPointIds.emplace_back(pt->Id);
next = interface[next].second;
}
if (next == VTK_DEFAULT_EDGE_INDEX)
{
vtkWarningWithObjectMacro(nullptr, "Uninitialized edge encountered");
return;
}
}
// XXX: We need to clarify a criterion for valid cells
// (i.e. that can be added to the output)
if (!newOutputPointIds.empty())
{
this->CreateNewCellAndCopyData(newOutputPointIds, cellId);
}
}
};
// Create interface points for interface A and B if they are defined
createInterfacePoints(internalFaceA);
createInterfacePoints(internalFaceB);
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::GenerateOneCellFace(std::vector<HTG3DPoint>& cellPoints,
std::vector<std::pair<HTG3DPoint, HTG3DPoint>>& edgePoints, unsigned int faceId, vtkIdType cellId,
const double* cellOrigin, const double* cellSize, unsigned int offset, unsigned int orientation,
std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>>& internalFaceA,
std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>>& internalFaceB)
{
double pt[3] = { 0., 0., 0. };
// We compute the current cell points coordinates only if we didn't do it before
// (i.e. if IsValid == false for a given point)
// XXX: The code below can be reworked. We can think about computing all
// cell points once and for all before calling this function and remove all
// the logic below.
HTG3DPoint* currentPt = &cellPoints[::FACE_PTS_IDS[faceId][0]];
if (currentPt->IsValid)
{
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][1]];
if (currentPt->IsValid)
{
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][2]];
if (currentPt->IsValid)
{
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
memcpy(pt, cellOrigin, 3 * sizeof(double));
if (offset)
{
pt[orientation] += cellSize[orientation];
}
unsigned int axis2 = (orientation + 2) % 3;
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
}
}
else
{
memcpy(pt, cellOrigin, 3 * sizeof(double));
if (offset)
{
pt[orientation] += cellSize[orientation];
}
unsigned int axis1 = (orientation + 1) % 3;
unsigned int axis2 = (orientation + 2) % 3;
pt[axis1] += cellSize[axis1];
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
pt[axis1] = cellOrigin[axis1];
this->SetXYZ(*currentPt, pt);
}
}
}
else
{
memcpy(pt, cellOrigin, 3 * sizeof(double));
if (offset)
{
pt[orientation] += cellSize[orientation];
}
unsigned int axis1 = (orientation + 1) % 3;
pt[axis1] += cellSize[axis1];
this->SetXYZ(*currentPt, pt);
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][2]];
if (currentPt->IsValid)
{
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
unsigned int axis2 = (orientation + 2) % 3;
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
}
}
else
{
unsigned int axis2 = (orientation + 2) % 3;
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
pt[axis1] = cellOrigin[axis1];
this->SetXYZ(*currentPt, pt);
}
}
}
}
else
{
memcpy(pt, cellOrigin, 3 * sizeof(double));
if (offset)
{
pt[orientation] += cellSize[orientation];
}
this->SetXYZ(*currentPt, pt);
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][1]];
if (currentPt->IsValid)
{
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][2]];
if (currentPt->IsValid)
{
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
unsigned int axis2 = (orientation + 2) % 3;
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
}
}
else
{
unsigned int axis1 = (orientation + 1) % 3;
unsigned int axis2 = (orientation + 2) % 3;
pt[axis1] += cellSize[axis1];
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
pt[axis1] = cellOrigin[axis1];
this->SetXYZ(*currentPt, pt);
}
}
}
else
{
unsigned int axis1 = (orientation + 1) % 3;
pt[axis1] += cellSize[axis1];
this->SetXYZ(*currentPt, pt);
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][2]];
if (currentPt->IsValid)
{
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
unsigned int axis2 = (orientation + 2) % 3;
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
}
}
else
{
unsigned int axis2 = (orientation + 2) % 3;
pt[axis2] += cellSize[axis2];
this->SetXYZ(*currentPt, pt);
currentPt = &cellPoints[::FACE_PTS_IDS[faceId][3]];
if (!currentPt->IsValid)
{
pt[axis1] = cellOrigin[axis1];
this->SetXYZ(*currentPt, pt);
}
}
}
}
// Storage for new face vertex IDs
std::vector<vtkIdType> outputIndexPoints;
unsigned int currentEdgePointA = VTK_DEFAULT_EDGE_INDEX;
vtkIdType lastId = -1;
unsigned int currentEdgePointB = VTK_DEFAULT_EDGE_INDEX;
// Iterate over the edges of the current face to add face points.
// If there is no interface, simply insert the 4 points of the face.
// If one or two interfaces pass through the cell, also compute the
// additional points of the interface (intersection between the interface and
// the edges of the cell).
for (unsigned int edgeId = 0; edgeId < 4; ++edgeId)
{
unsigned int faceEdgeId = ::FACE_EDGES_IDS[faceId][edgeId];
std::pair<unsigned int, unsigned int> edgePointId = ::EDGE_PTS_IDS[faceEdgeId];
this->ComputeEdge(cellPoints[edgePointId.first], cellPoints[edgePointId.second], edgePoints,
::EDGE_AXIS[faceEdgeId], faceEdgeId, internalFaceA, internalFaceB, currentEdgePointA,
currentEdgePointB);
// The order of points insertion is important in order to considerate all face points.
// Regarding the way IDs are stored in FACE_PTS_IDS, FACE_EDGES_IDS and EDGE_PTS_IDS,
// we have to retrieve the first point of the edge for the 1st and 2nd edges,
// and the second point for the 3rd and 4th edges of the face.
std::vector<HTG3DPoint*> points;
if (edgeId < 2)
{
points.emplace_back(&cellPoints[edgePointId.first]); // first vertex quad face
points.emplace_back(&edgePoints[faceEdgeId].first); // first point one edge
points.emplace_back(&edgePoints[faceEdgeId].second); // second point one edge
}
else
{
points.emplace_back(&cellPoints[edgePointId.second]); // second vertex quad face
points.emplace_back(&edgePoints[faceEdgeId].second); // second point one edge
points.emplace_back(&edgePoints[faceEdgeId].first); // first point one edge
}
for (auto point : points)
{
if (point->IsValid)
{
vtkIdType pointId = -1;
if (this->IsInside(*point))
{
pointId = this->InsertUniquePoint(*point);
}
if (pointId >= 0 && pointId != lastId) // lastId is used to avoid repetitions
{
outputIndexPoints.emplace_back(pointId);
lastId = pointId;
}
}
}
}
// Insert a new face
if (outputIndexPoints.size() > 2)
{
this->CreateNewCellAndCopyData(outputIndexPoints, cellId);
}
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::SetInterfaceFace(unsigned int edgeId,
std::map<unsigned int, std::pair<vtkHyperTreeGridGeometry3DImpl::HTG3DPoint*, unsigned int>>&
internalFace,
vtkHyperTreeGridGeometry3DImpl::HTG3DPoint* point)
{
if (internalFace.count(edgeId) <= 0)
{
internalFace[edgeId].first = point;
internalFace[edgeId].second = VTK_DEFAULT_EDGE_INDEX;
}
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::CompleteLinkage(
std::map<unsigned int, std::pair<vtkHyperTreeGridGeometry3DImpl::HTG3DPoint*, unsigned int>>&
internalFace,
unsigned int edgePointId1, unsigned int edgePointId2)
{
if (edgePointId1 == VTK_DEFAULT_EDGE_INDEX || edgePointId2 == VTK_DEFAULT_EDGE_INDEX)
{
// XXX: this seems to happen quite often.
// We must clarify if it is intended
return;
}
if (edgePointId1 == edgePointId2)
{
vtkErrorWithObjectMacro(nullptr, "Edge with 2 identical points found !");
return;
}
// Build link between edgePointId1 et edgePointId2
// XXX: need to clarify naming for nextEdgePointId1 and nextEdgePointId2
unsigned int nextEdgePointId1 = internalFace[edgePointId1].second;
unsigned int nextEdgePointId2 = internalFace[edgePointId2].second;
if (nextEdgePointId1 == VTK_DEFAULT_EDGE_INDEX)
{
if (nextEdgePointId2 == VTK_DEFAULT_EDGE_INDEX || nextEdgePointId2 != edgePointId1)
{
// Arbitrary choice of linking direction,
// or nextEdgePointId2 already describes a different linking
internalFace[edgePointId1].second = edgePointId2;
}
}
else if (nextEdgePointId2 == VTK_DEFAULT_EDGE_INDEX)
{
// Arbitrary choice of linking direction
internalFace[edgePointId2].second = edgePointId1;
}
else if (nextEdgePointId2 != edgePointId1)
{
// If nextEdgePointId1 is involved in a different linkage, this is also the case for
// nextEdgePointId2 We have to invert both linkages and connect them together
std::vector<unsigned int> chainette;
chainette.emplace_back(edgePointId1);
unsigned int next = internalFace[edgePointId1].second;
while (next != VTK_DEFAULT_EDGE_INDEX)
{
// XXX: think adding an "emergency" breaking condition to
// avoid potential infinite looping
chainette.emplace_back(next);
next = internalFace[next].second;
}
unsigned int current = VTK_DEFAULT_EDGE_INDEX;
for (std::vector<unsigned int>::reverse_iterator it = chainette.rbegin();
it != chainette.rend(); ++it)
{
if (current == VTK_DEFAULT_EDGE_INDEX)
{
current = *it;
}
else
{
next = *it;
internalFace[current].second = next;
current = next;
}
}
if (current != edgePointId1)
{
vtkWarningWithObjectMacro(nullptr,
<< "Unexpected edge encountered. Expected " << edgePointId1 << ", got " << current << ".");
}
internalFace[current].second = edgePointId2;
}
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridGeometry3DImpl::ComputeEdgeInterface(const HTG3DPoint& firstPoint,
const HTG3DPoint& secondPoint, std::vector<std::pair<HTG3DPoint, HTG3DPoint>>& edgePoints,
unsigned int edgeAxis, unsigned int edgeId,
std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>>& internalFace,
HTG3DPoint& pointInter, unsigned int& edgePointId, bool isInterfaceA)
{
if (!firstPoint.IsValid)
{
vtkWarningWithObjectMacro(nullptr, "First edge point is invalid.");
}
if (!secondPoint.IsValid)
{
vtkWarningWithObjectMacro(nullptr, "Second edge point is invalid.");
}
auto firstPointDist =
(isInterfaceA ? firstPoint.DistanceToInterfaceA : firstPoint.DistanceToInterfaceB);
auto secondPointDist =
(isInterfaceA ? secondPoint.DistanceToInterfaceA : secondPoint.DistanceToInterfaceB);
if (firstPointDist == 0.)
{
if (secondPointDist == 0.)
{
// Edge case : the interface corresponds to the edge
// XXX: need to clarify naming for iEdgePoint1 and iEdgePoint2
unsigned int iEdgePoint1 = ::EDGE_PTS_IDS[edgeId].first + NUMBER_OF_EDGES;
edgePoints[iEdgePoint1].first = firstPoint;
edgePoints[iEdgePoint1].second.IsValid = false;
this->SetInterfaceFace(iEdgePoint1, internalFace, &edgePoints[iEdgePoint1].first);
unsigned int iEdgePoint2 = ::EDGE_PTS_IDS[edgeId].second + NUMBER_OF_EDGES;
edgePoints[iEdgePoint2].first = secondPoint;
edgePoints[iEdgePoint2].second.IsValid = false;
this->SetInterfaceFace(iEdgePoint2, internalFace, &edgePoints[iEdgePoint2].first);
this->CompleteLinkage(internalFace, iEdgePoint1, iEdgePoint2);
return true;
}
// The interface point is a the first point of the cell
pointInter = firstPoint;
edgePointId = ::EDGE_PTS_IDS[edgeId].first + NUMBER_OF_EDGES;
}
else if (secondPointDist == 0.)
{
// The interface point is a the second point of the cell
pointInter = secondPoint;
edgePointId = ::EDGE_PTS_IDS[edgeId].second + NUMBER_OF_EDGES;
}
else if (firstPointDist * secondPointDist < 0.)
{
// Compute the position of the interface point on the edge,
// between the first and the second point
double xyz[3] = { 0., 0., 0. };
memcpy(xyz, firstPoint.Coords, 3 * sizeof(double));
xyz[edgeAxis] = (secondPointDist * firstPoint.Coords[edgeAxis] -
firstPointDist * secondPoint.Coords[edgeAxis]) /
(secondPointDist - firstPointDist);
this->SetIntersectXYZ(pointInter, xyz, isInterfaceA);
if (pointInter.Coords[edgeAxis] == firstPoint.Coords[edgeAxis] ||
pointInter.Coords[edgeAxis] == secondPoint.Coords[edgeAxis])
{
vtkWarningWithObjectMacro(nullptr, "Interface point coincide with an edge point");
pointInter.IsValid = false;
}
edgePointId = edgeId;
}
return false;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::ComputeEdge(const HTG3DPoint& firstPoint,
const HTG3DPoint& secondPoint, std::vector<std::pair<HTG3DPoint, HTG3DPoint>>& edgePoints,
unsigned int edgeAxis, unsigned int edgeId,
std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>>& internalFaceA,
std::map<unsigned int, std::pair<HTG3DPoint*, unsigned int>>& internalFaceB,
unsigned int& currentEdgePointA, unsigned int& currentEdgePointB)
{
HTG3DPoint pointA, pointB;
unsigned int iEdgePointA = edgeId, iEdgePointB = edgeId;
// Compute the intersection point for the first interface, if any.
if (firstPoint.HasInterfaceA &&
this->ComputeEdgeInterface(firstPoint, secondPoint, edgePoints, edgeAxis, edgeId, internalFaceA,
pointA, iEdgePointA, true))
{
return;
}
// Compute the intersection point for the second interface, if any.
if (firstPoint.HasInterfaceB &&
this->ComputeEdgeInterface(firstPoint, secondPoint, edgePoints, edgeAxis, edgeId, internalFaceB,
pointB, iEdgePointB, false))
{
return;
}
// If intersection points are computed, add them to the construction (linkage)
// of the interface faces
if (pointA.IsValid)
{
if (pointB.IsValid)
{
if (pointA.Coords[edgeAxis] < pointB.Coords[edgeAxis])
{
if (edgeId == iEdgePointA && edgeId == iEdgePointB)
{
edgePoints[edgeId].first = pointA;
this->SetInterfaceFace(edgeId, internalFaceA, &edgePoints[edgeId].first);
this->CompleteLinkage(internalFaceA, currentEdgePointA, edgeId);
currentEdgePointA = edgeId;
edgePoints[edgeId].second = pointB;
this->SetInterfaceFace(edgeId, internalFaceB, &edgePoints[edgeId].second);
this->CompleteLinkage(internalFaceB, currentEdgePointB, edgeId);
currentEdgePointB = edgeId;
}
else
{
edgePoints[iEdgePointA].first = pointA;
this->SetInterfaceFace(iEdgePointA, internalFaceA, &edgePoints[iEdgePointA].first);
this->CompleteLinkage(internalFaceA, currentEdgePointA, iEdgePointA);
currentEdgePointA = iEdgePointA;
edgePoints[iEdgePointB].second = pointB;
this->SetInterfaceFace(iEdgePointB, internalFaceB, &edgePoints[iEdgePointB].second);
this->CompleteLinkage(internalFaceB, currentEdgePointB, iEdgePointB);
currentEdgePointB = iEdgePointB;
}
}
if (pointA.Coords[edgeAxis] > pointB.Coords[edgeAxis])
{
if (edgeId == iEdgePointA && edgeId == iEdgePointB)
{
edgePoints[edgeId].first = pointB;
this->SetInterfaceFace(edgeId, internalFaceB, &edgePoints[edgeId].first);
this->CompleteLinkage(internalFaceB, currentEdgePointB, edgeId);
currentEdgePointB = edgeId;
edgePoints[edgeId].second = pointA;
this->SetInterfaceFace(edgeId, internalFaceA, &edgePoints[edgeId].second);
this->CompleteLinkage(internalFaceA, currentEdgePointA, edgeId);
currentEdgePointA = edgeId;
}
else
{
edgePoints[iEdgePointA].first = pointA;
edgePoints[iEdgePointA].second.IsValid = false;
this->SetInterfaceFace(iEdgePointA, internalFaceA, &edgePoints[iEdgePointA].first);
this->CompleteLinkage(internalFaceA, currentEdgePointA, iEdgePointA);
currentEdgePointA = iEdgePointA;
edgePoints[iEdgePointB].second = pointB;
edgePoints[iEdgePointB].second.IsValid = false;
this->SetInterfaceFace(iEdgePointB, internalFaceB, &edgePoints[iEdgePointB].second);
this->CompleteLinkage(internalFaceB, currentEdgePointB, iEdgePointB);
currentEdgePointB = iEdgePointB;
}
}
}
else
{
edgePoints[iEdgePointA].first = pointA;
this->SetInterfaceFace(iEdgePointA, internalFaceA, &edgePoints[iEdgePointA].first);
this->CompleteLinkage(internalFaceA, currentEdgePointA, iEdgePointA);
currentEdgePointA = iEdgePointA;
}
}
else if (pointB.IsValid)
{
edgePoints[iEdgePointB].first = pointB;
this->SetInterfaceFace(iEdgePointB, internalFaceB, &edgePoints[iEdgePointB].first);
this->CompleteLinkage(internalFaceB, currentEdgePointB, iEdgePointB);
currentEdgePointB = iEdgePointB;
}
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridGeometry3DImpl::IsInside(const HTG3DPoint& point)
{
if (!point.IsValid)
{
return false;
}
if (this->CellInterfaceType == -1)
{
if (point.HasInterfaceA)
{
if (point.DistanceToInterfaceA < 0)
{
return false;
}
}
return true;
}
else if (this->CellInterfaceType == 0)
{
if (point.DistanceToInterfaceA > 0)
{
return false;
}
if (point.DistanceToInterfaceB < 0)
{
return false;
}
return true;
}
else if (this->CellInterfaceType == 1)
{
if (point.HasInterfaceB)
{
if (point.DistanceToInterfaceB > 0)
{
return false;
}
}
return true;
}
else
{
// Pure cell
return true;
}
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::SetXYZ(HTG3DPoint& point, const double* coords)
{
point.Coords[0] = coords[0];
point.Coords[1] = coords[1];
point.Coords[2] = coords[2];
point.Id = -1;
if (this->HasInterfaceOnThisCell)
{
if (this->CellInterfaceType != 1.)
{
point.HasInterfaceA = true;
point.DistanceToInterfaceA = this->ComputeDistanceToInterfaceA(point.Coords);
}
if (this->CellInterfaceType != -1.)
{
point.HasInterfaceB = true;
point.DistanceToInterfaceB = this->ComputeDistanceToInterfaceB(point.Coords);
}
}
point.IsValid = true;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridGeometry3DImpl::SetIntersectXYZ(
HTG3DPoint& point, const double* coords, bool isInterfaceA)
{
point.Coords[0] = coords[0];
point.Coords[1] = coords[1];
point.Coords[2] = coords[2];
point.Id = -1;
if (isInterfaceA)
{
point.HasInterfaceA = true;
point.DistanceToInterfaceA = 0.;
if (this->HasInterfaceOnThisCell && this->CellInterfaceType != -1.)
{
point.HasInterfaceB = true;
point.DistanceToInterfaceB = this->ComputeDistanceToInterfaceB(point.Coords);
}
else
{
point.HasInterfaceB = false;
}
}
else
{
point.HasInterfaceB = true;
point.DistanceToInterfaceB = 0.;
if (this->HasInterfaceOnThisCell && this->CellInterfaceType != 1.)
{
point.HasInterfaceA = true;
point.DistanceToInterfaceA = this->ComputeDistanceToInterfaceA(point.Coords); // 1 is A
}
}
point.IsValid = true;
}
//------------------------------------------------------------------------------
vtkIdType vtkHyperTreeGridGeometry3DImpl::InsertUniquePoint(HTG3DPoint& point)
{
if (point.IsValid && point.Id < 0)
{
// Insert a point
if (this->Locator)
{
this->Locator->InsertUniquePoint(point.Coords, point.Id);
}
else
{
point.Id = this->OutPoints->InsertNextPoint(point.Coords);
}
}
return point.Id;
}
//----------------------------------------------------------------------------------------------
bool vtkHyperTreeGridGeometry3DImpl::GetHasInterface(vtkIdType cellId) const
{
// Only useful in 3D, this method makes it possible to know if the neighboring cell
// of _inputCellIndex offset is pure or describes an interface.
// It is pure if:
// - there is no defined interface (m_hasInterface);
// - there is no description of the interfaces (m_inputIntercepts);
// - there is a description of the interfaces but the mixed cell type is not 2
// (pure cell) (m_inputIntercepts[2]); -1 and 1 describes a case of a mixed
// cell of a material with a single interface, 0 a case of a mixed cell of a
// material with a double interface;
// - there is no description of the normals (m_inputNormals);
// - there is a description of the normals but not zero.
if (cellId < 0)
{
return false;
}
if (!this->HasInterface)
{
return false;
}
bool ret =
(this->InIntercepts && ((this->InIntercepts->GetTuple(cellId))[2] < 2) && this->InNormals);
if (ret)
{
double* normal = this->InNormals->GetTuple(cellId);
ret = !(normal[0] == 0. && normal[1] == 0. && normal[2] == 0.);
}
return ret;
}
VTK_ABI_NAMESPACE_END
|