File: vtkHyperTreeGridGradient.cxx

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 205,916 kB
  • sloc: cpp: 2,336,565; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 178; javascript: 165; objc: 153; tcl: 59
file content (626 lines) | stat: -rw-r--r-- 19,146 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause

#include "vtkHyperTreeGridGradient.h"

#include "vtkBitArray.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkDoubleArray.h"
#include "vtkHyperTree.h"
#include "vtkHyperTreeGrid.h"
#include "vtkHyperTreeGridNonOrientedMooreSuperCursor.h"
#include "vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor.h"
#include "vtkIdList.h"
#include "vtkLine.h"
#include "vtkObjectFactory.h"
#include "vtkPixel.h"
#include "vtkPointData.h"
#include "vtkPolyData.h"
#include "vtkSMPTools.h"
#include "vtkVoxel.h"

#include <set>

// ---- Gradient computation tools ---

namespace
{
VTK_ABI_NAMESPACE_BEGIN

//------------------------------------------------------------------------------
// Utility
template <class Cursor>
bool IsLeaf(Cursor* cursor, vtkIdType sid = vtkHyperTreeGrid::InvalidIndex)
{
  if (sid == vtkHyperTreeGrid::InvalidIndex)
    return cursor->IsLeaf();
  return cursor->IsLeaf(sid);
}
template <>
bool IsLeaf(vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor* cursor, vtkIdType sid)
{
  if (sid == vtkHyperTreeGrid::InvalidIndex)
    return cursor->IsRealLeaf();
  return cursor->IsRealLeaf(sid);
}

bool IsCoarse(vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor* cursor,
  vtkIdType sid = vtkHyperTreeGrid::InvalidIndex)
{
  if (sid == vtkHyperTreeGrid::InvalidIndex)
    return !cursor->IsRealLeaf() && !cursor->IsVirtualLeaf();
  return !cursor->IsRealLeaf(sid) && !cursor->IsVirtualLeaf(sid);
}

template <class Cursor>
float GetExtensiveRatio(Cursor* vtkNotUsed(cursor), vtkIdType vtkNotUsed(sid))
{
  return 1;
}
template <>
float GetExtensiveRatio(vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor* cursor, vtkIdType sid)
{
  return cursor->GetExtensivePropertyRatio(sid);
}

//------------------------------------------------------------------------------
// inherit from tuple to give automatic comparison operator
struct Neigh : public std::tuple<vtkIdType, vtkIdType>
{
  vtkIdType& source;
  vtkIdType& target;
  vtkIdType nId; // ignored in the comparison

  Neigh(vtkIdType s, vtkIdType t, vtkIdType n)
    : source(std::get<0>(*this))
    , target(std::get<1>(*this))
    , nId(n)
  {
    this->source = s;
    this->target = t;
  }
};

//------------------------------------------------------------------------------
// main computation
struct GradientWorker
{
  using NeighList = std::set<Neigh>;

  // input scalars
  vtkDataArray* InArray;
  // output gradient
  vtkDoubleArray* OutArray;
  // apply extensive ratio
  bool ExtensiveComputation = false;
  // internal storage
  // WARN: not thread safe
  vtkNew<vtkIdList> Leaves;
  vtkLine* Line;
  vtkPixel* Pixel;
  vtkVoxel* Voxel;

  //----------------------------------------------------------------------------
  GradientWorker(vtkDataArray* input, vtkDoubleArray* output, bool extensive)
    : InArray{ input }
    , OutArray{ output }
    , ExtensiveComputation{ extensive }
  {
    this->OutArray->Fill(0);
  }

  //----------------------------------------------------------------------------
  template <class Cursor>
  void ComputeRequestedArraysAt(Cursor* supercursor, vtkIdType subCursorId)
  {
    vtkIdType id = supercursor->GetGlobalNodeIndex();
    vtkIdType idN = supercursor->GetGlobalNodeIndex(subCursorId);

    const double extensiveRatio =
      this->ExtensiveComputation ? GetExtensiveRatio(supercursor, subCursorId) : 1;

    const int nbComp = this->InArray->GetNumberOfComponents();
    assert(nbComp <= 3); // already checked in main method

    std::vector<double> scals(nbComp);
    this->InArray->GetTuple(id, scals.data());
    std::vector<double> scalsN(nbComp);
    this->InArray->GetTuple(idN, scalsN.data());

    double center[3];
    supercursor->GetPoint(center);
    double centerN[3];
    supercursor->GetPoint(subCursorId, centerN);

    // base gradient

    std::vector<double> dist(3, 0);
    double norm = 0;
    for (int dim = 0; dim < 3; dim++)
    {
      const auto centerDist = center[dim] - centerN[dim];
      dist[dim] = centerDist;
      norm += centerDist * centerDist;
    }

    std::vector<double> grad(nbComp * 3, 0);
    if (norm != 0)
    {
      for (int comp = 0; comp < nbComp; comp++)
      {
        double scalDiff = extensiveRatio * (scals[comp] - scalsN[comp]);
        for (int dim = 0; dim < 3; dim++)
        {
          grad[comp * 3 + dim] = (scalDiff * dist[dim]) / norm;
        }
      }
    }

    // Output: impact both id and idN values
    // This part is not THREAD SAFE
    std::vector<double> gradArrTuple(nbComp * 3);
    // id contribution
    this->OutArray->GetTypedTuple(id, gradArrTuple.data());
    for (int elt = 0; elt < nbComp * 3; elt++)
    {
      gradArrTuple[elt] += grad[elt];
    }
    this->OutArray->SetTypedTuple(id, gradArrTuple.data());
    // idN contribution
    this->OutArray->GetTypedTuple(idN, gradArrTuple.data());
    for (int elt = 0; elt < nbComp * 3; elt++)
    {
      gradArrTuple[elt] += grad[elt];
    }
    this->OutArray->SetTuple(idN, gradArrTuple.data());
  }

  //----------------------------------------------------------------------------
  void AccumulateGradienAt(vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor* supercursor)
  {
    // Method used to keep the same structure
    this->ComputeGradientUnlimited(supercursor);
  }

  //----------------------------------------------------------------------------
  void ComputeGradientUnlimited(vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor* supercursor)
  {
    // Retrieve cursor info
    assert(supercursor->IsRealLeaf()); // cannot compute gradient on coarse

    auto nbc = supercursor->GetNumberOfCursors();
    for (unsigned i = 0; i < nbc; i++)
    {

      vtkIdType idN = supercursor->GetGlobalNodeIndex(i);
      if (idN < 0 || idN == vtkHyperTreeGrid::InvalidIndex)
      {
        // invalid neigh, no computation
        // can be a boundary for example
        continue;
      }

      if (IsCoarse(supercursor, i))
      {
        // avoid conting non leaf cells
        continue;
      }

      if (supercursor->IsRealLeaf(i) && supercursor->GetGlobalNodeIndex() <= idN)
      {
        // avoid double computation between siblings
        continue;
      }

      if (supercursor->IsMasked(i))
      {
        // do not consider masked cells
        continue;
      }

      ComputeRequestedArraysAt(supercursor, i);
    }
  }

  //----------------------------------------------------------------------------
  void AccumulateGradienAt(vtkHyperTreeGridNonOrientedMooreSuperCursor* supercursor)
  {
    NeighList neighEdges = this->FindNeighborsAt(supercursor);
    this->ComputeGradientUnstructured(supercursor, neighEdges);
  }

  //----------------------------------------------------------------------------
  NeighList FindNeighborsAt(vtkHyperTreeGridNonOrientedMooreSuperCursor* supercursor)
  {
    // Retrieve cursor info
    vtkIdType id = supercursor->GetGlobalNodeIndex();
    vtkIdType dim = supercursor->GetDimension();
    vtkIdType lvl = supercursor->GetLevel();

    assert(supercursor->IsLeaf()); // cannot compute gradient on coarse

    // output
    NeighList neighEdges;

    // Cell is not masked, iterate over its corners
    vtkIdType numLeavesCorners = 1ULL << dim;
    for (vtkIdType cornerIdx = 0; cornerIdx < numLeavesCorners; ++cornerIdx)
    {
      this->Leaves->SetNumberOfIds(numLeavesCorners);

      // Iterate over every leaf touching the corner and check ownership
      for (vtkIdType leafIdx = 0; leafIdx < numLeavesCorners; ++leafIdx)
      {
        supercursor->GetCornerCursors(cornerIdx, leafIdx, this->Leaves);
      }

      // If cell owns dual cell, compute contours thereof
      // Iterate over cell corners
      for (vtkIdType _cornerIdx = 0; _cornerIdx < numLeavesCorners; ++_cornerIdx)
      {
        // Get cursor corresponding to this corner
        vtkIdType cursorId = this->Leaves->GetId(_cornerIdx);

        // Retrieve neighbor index and add to list of cell vertices
        vtkIdType idN = supercursor->GetGlobalNodeIndex(cursorId);
        vtkIdType lvlN = supercursor->GetLevel(cursorId);

        if (idN < 0 || !supercursor->IsLeaf(cursorId))
        {
          // invalid neigh (boundary or coarse)
          continue;
        }

        if (supercursor->IsMasked(cursorId))
        {
          // masked neigh are ignored
          continue;
        }

        if (lvl > lvlN || idN > id)
        {
          // process edges if neigh is higher in the tree of if current cell has lowest ID
          neighEdges.emplace(id, idN, cursorId);
        }
      }
    }
    return neighEdges;
  }

  //----------------------------------------------------------------------------
  void ComputeGradientUnstructured(
    vtkHyperTreeGridNonOrientedMooreSuperCursor* supercursor, const NeighList& neighEdges)
  {
    for (const auto& edge : neighEdges)
    {
      assert(edge.source == supercursor->GetGlobalNodeIndex());
      ComputeRequestedArraysAt(supercursor, edge.nId);
    }
  }
};

struct FieldsWorker
{
  // input fields
  vtkDoubleArray* InGradArray = nullptr;
  // output fields, filled if not nullptr
  vtkDoubleArray* OutDivArray = nullptr;
  vtkDoubleArray* OutVortArray = nullptr;
  vtkDoubleArray* OutQCritArray = nullptr;

  //----------------------------------------------------------------------------
  FieldsWorker(vtkDoubleArray* input)
    : InGradArray{ input }
  {
    if (!input || input->GetNumberOfComponents() != 9)
    {
      vtkErrorWithObjectMacro(nullptr, "Invalid input, should be an array with 9 components");
    }
  }

  //----------------------------------------------------------------------------
  void InitDivergenceArray(vtkDoubleArray* divergence)
  {
    divergence->Fill(0);
    this->OutDivArray = divergence;
  }

  //----------------------------------------------------------------------------
  void InitVorticityArray(vtkDoubleArray* vort)
  {
    vort->Fill(0);
    this->OutVortArray = vort;
  }

  //----------------------------------------------------------------------------
  void InitQCriterionArray(vtkDoubleArray* qcrit)
  {
    qcrit->Fill(0);
    this->OutQCritArray = qcrit;
  }

  //----------------------------------------------------------------------------
  void ComputeRequestedArraysAt(vtkIdType id)
  {
    std::vector<double> grad(9);
    this->InGradArray->GetTuple(id, grad.data());

    if (this->OutDivArray != nullptr)
    {
      // compute from gradient
      double div = grad[0] + grad[4] + grad[8];
      this->OutDivArray->SetTuple1(id, div);
    }

    if (this->OutVortArray != nullptr)
    {
      // compute from gradient
      double vort0 = grad[7] - grad[5];
      double vort1 = grad[2] - grad[6];
      double vort2 = grad[3] - grad[1];

      this->OutVortArray->SetTuple3(id, vort0, vort1, vort2);
    }

    if (this->OutQCritArray != nullptr)
    {
      // compute from gradient
      // see http://public.kitware.com/pipermail/paraview/2015-May/034233.html for
      // paper citation and formula on Q-criterion.
      double qCrit = -(grad[0] * grad[0] + grad[4] * grad[4] + grad[8] * grad[8]) / 2. -
        (grad[1] * grad[3] + grad[2] * grad[6] + grad[5] * grad[7]);

      this->OutQCritArray->SetTuple1(id, qCrit);
    }
  }
};

VTK_ABI_NAMESPACE_END
} // end of anonymous namespace

VTK_ABI_NAMESPACE_BEGIN
// ---- vtkHyperTreeGridGradient ---

vtkStandardNewMacro(vtkHyperTreeGridGradient);

//------------------------------------------------------------------------------
vtkHyperTreeGridGradient::vtkHyperTreeGridGradient()
{
  // Process active cells scalars by default
  this->SetInputArrayToProcess(
    0, 0, 0, vtkDataObject::FIELD_ASSOCIATION_CELLS, vtkDataSetAttributes::SCALARS);
  // output is HTG
  this->AppropriateOutput = true;
}

//------------------------------------------------------------------------------
vtkHyperTreeGridGradient::~vtkHyperTreeGridGradient() = default;

//------------------------------------------------------------------------------
void vtkHyperTreeGridGradient::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);

  if (this->InArray)
  {
    os << indent << "InArray:\n";
    this->InArray->PrintSelf(os, indent.GetNextIndent());
  }
  else
  {
    os << indent << "InArray: ( none )\n";
  }
  os << indent << "Result array name: " << this->GradientArrayName << "\n";
}

//------------------------------------------------------------------------------
int vtkHyperTreeGridGradient::ProcessTrees(vtkHyperTreeGrid* input, vtkDataObject* outputDO)
{
  // Downcast output data object to hyper tree grid
  vtkHyperTreeGrid* output = vtkHyperTreeGrid::SafeDownCast(outputDO);
  if (!output)
  {
    vtkErrorMacro("Incorrect type of output: " << outputDO->GetClassName());
    return 0;
  }

  // Retrieve scalar quantity of interest
  this->InArray = this->GetInputArrayToProcess(0, input);
  if (!this->InArray)
  {
    vtkErrorMacro(<< "No input array to use for the gradient computation");
    return 1;
  }
  const int nbComp = this->InArray->GetNumberOfComponents();
  if (nbComp != 1 && nbComp != 3)
  {
    vtkErrorMacro(<< "Input array should contains scalars or 3d-vectors");
    return 1;
  }
  if ((this->ComputeQCriterion || this->ComputeVorticity || this->ComputeDivergence) && nbComp != 3)
  {
    vtkErrorMacro("Input array must have exactly three components with "
      << "ComputeDivergence, ComputeVorticity or ComputeQCriterion flag enabled.");
    return 1;
  }

  if (!this->ComputeGradient && !this->ComputeQCriterion && !this->ComputeVorticity &&
    !this->ComputeDivergence)
  {
    // nothing to do, early exit
    output->ShallowCopy(input);
    return 1;
  }

  this->InMask = nullptr; // Masks aren't supported in this filter for now.
  this->InGhostArray = input->GetGhostCells();

  // Gradient is always computed

  this->OutGradArray->SetName(this->GradientArrayName);
  this->OutGradArray->SetNumberOfComponents(this->InArray->GetNumberOfComponents() * 3);
  this->OutGradArray->SetNumberOfTuples(this->InArray->GetNumberOfTuples());
  GradientWorker gradientWorker(this->InArray, this->OutGradArray, this->ExtensiveComputation);

  // For now HTG Gradient doesn't support masks because the unlimited cursors don't either.
  // See https://gitlab.kitware.com/vtk/vtk/-/issues/19294
  // So we need to make a copy of the input and remove its mask to perform the
  // gradient processing.
  vtkNew<vtkHyperTreeGrid> inputCopy;
  inputCopy->ShallowCopy(input);
  inputCopy->SetMask(nullptr);

  // GradieGradientnt computation

  if (this->Mode == ComputeMode::UNLIMITED)
  {
    vtkIdType index;
    vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
    inputCopy->InitializeTreeIterator(it);
    vtkNew<vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor> supercursor;
    while (it.GetNextTree(index))
    {
      // Initialize new cursor at root of current tree
      inputCopy->InitializeNonOrientedUnlimitedMooreSuperCursor(supercursor, index);
      // Compute gradient recursively
      this->RecursivelyProcessGradientTree(supercursor.Get(), gradientWorker);

      this->CheckAbort();
      if (this->GetAbortOutput())
      {
        break;
      }
    } // it
  }
  else // UNSTRUCTURED
  {
    vtkIdType index;
    vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
    inputCopy->InitializeTreeIterator(it);
    vtkNew<vtkHyperTreeGridNonOrientedMooreSuperCursor> supercursor;
    while (it.GetNextTree(index))
    {
      // Initialize new cursor at root of current tree
      inputCopy->InitializeNonOrientedMooreSuperCursor(supercursor, index);
      // Compute contours recursively
      this->RecursivelyProcessGradientTree(supercursor.Get(), gradientWorker);

      this->CheckAbort();
      if (this->GetAbortOutput())
      {
        break;
      }
    } // it
  }

  if (this->ComputeDivergence || this->ComputeVorticity || this->ComputeQCriterion)
  {
    FieldsWorker fieldsWorker(this->OutGradArray);
    if (this->ComputeDivergence)
    {
      this->OutDivArray->SetName(this->DivergenceArrayName);
      this->OutDivArray->SetNumberOfComponents(1);
      this->OutDivArray->SetNumberOfTuples(this->InArray->GetNumberOfTuples());
      fieldsWorker.InitDivergenceArray(this->OutDivArray);
    }
    if (this->ComputeVorticity)
    {
      this->OutVortArray->SetName(this->VorticityArrayName);
      this->OutVortArray->SetNumberOfComponents(3);
      this->OutVortArray->SetNumberOfTuples(this->InArray->GetNumberOfTuples());
      fieldsWorker.InitVorticityArray(this->OutVortArray);
    }
    if (this->ComputeQCriterion)
    {
      this->OutQCritArray->SetName(this->QCriterionArrayName);
      this->OutQCritArray->SetNumberOfComponents(1);
      this->OutQCritArray->SetNumberOfTuples(this->InArray->GetNumberOfTuples());
      fieldsWorker.InitQCriterionArray(this->OutQCritArray);
    }

    this->ProcessFields(fieldsWorker);
  }

  // Generate output

  output->ShallowCopy(input);
  if (this->ComputeGradient)
  {
    output->GetCellData()->AddArray(this->OutGradArray);
    if (nbComp == 1)
    {
      output->GetCellData()->SetVectors(this->OutGradArray);
    }
    else if (nbComp == 3)
    {
      output->GetCellData()->SetTensors(this->OutGradArray);
    }
  }
  if (this->ComputeVorticity)
  {
    output->GetCellData()->AddArray(this->OutVortArray);
  }
  if (this->ComputeDivergence)
  {
    output->GetCellData()->AddArray(this->OutDivArray);
  }
  if (this->ComputeQCriterion)
  {
    output->GetCellData()->AddArray(this->OutQCritArray);
  }

  return 1;
}

//------------------------------------------------------------------------------
template <class Cursor, class Worker>
void vtkHyperTreeGridGradient::RecursivelyProcessGradientTree(Cursor* supercursor, Worker& worker)
{
  // Retrieve global index of input cursor
  vtkIdType id = supercursor->GetGlobalNodeIndex();

  if (this->InGhostArray && this->InGhostArray->GetTuple1(id))
  {
    return;
  }

  // Descend further into input trees only if cursor is not a leaf
  if (!IsLeaf(supercursor))
  {
    unsigned int numChildren = supercursor->GetNumberOfChildren();
    for (unsigned int child = 0; child < numChildren; ++child)
    {
      // Create child cursor from parent in input grid
      supercursor->ToChild(child);
      // Recurse
      this->RecursivelyProcessGradientTree(supercursor, worker);
      supercursor->ToParent();
    }
  }
  else if (!this->InMask || !this->InMask->GetTuple1(id))
  {
    worker.AccumulateGradienAt(supercursor);
  }
}

//------------------------------------------------------------------------------
template <class Worker>
void vtkHyperTreeGridGradient::ProcessFields(Worker& worker)
{
  // Retrieve global index of input cursor
  vtkIdType nbCells = this->OutGradArray->GetNumberOfTuples();
  for (vtkIdType id = 0; id < nbCells; id++)
  {
    if (this->InGhostArray && this->InGhostArray->GetTuple1(id))
    {
      continue;
    }
    if (this->InMask && this->InMask->GetTuple1(id))
    {
      continue;
    }
    worker.ComputeRequestedArraysAt(id);
  }
}
VTK_ABI_NAMESPACE_END