1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkHyperTreeGridPlaneCutter.h"
#include "vtkBitArray.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCleanPolyData.h"
#include "vtkCutter.h"
#include "vtkDataObject.h"
#include "vtkHyperTreeGrid.h"
#include "vtkHyperTreeGridNonOrientedGeometryCursor.h"
#include "vtkHyperTreeGridNonOrientedMooreSuperCursor.h"
#include "vtkIdList.h"
#include "vtkInformation.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPlane.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkUnstructuredGrid.h"
#include <cassert>
#include <cmath>
VTK_ABI_NAMESPACE_BEGIN
namespace
{
vtkIdType First8Integers[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
constexpr unsigned int MooreCursors3D[26] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26 };
}
vtkStandardNewMacro(vtkHyperTreeGridPlaneCutter);
//------------------------------------------------------------------------------
vtkHyperTreeGridPlaneCutter::vtkHyperTreeGridPlaneCutter()
{
this->Points = nullptr;
this->Cells = nullptr;
// Initialize plane parameters
std::fill(this->Plane, this->Plane + 4, 0.);
// By default a non-conforming output mesh is produced for better rendering
this->Dual = 0;
// By default member variables for dual-based computation are not used
this->SelectedCells = nullptr;
this->Centers = nullptr;
this->Cutter = nullptr;
this->Leaves = nullptr;
}
//------------------------------------------------------------------------------
vtkHyperTreeGridPlaneCutter::~vtkHyperTreeGridPlaneCutter()
{
if (this->Points)
{
this->Points->Delete();
this->Points = nullptr;
}
if (this->Cells)
{
this->Cells->Delete();
this->Cells = nullptr;
}
if (this->Leaves)
{
this->Leaves->Delete();
this->Leaves = nullptr;
}
if (this->Centers)
{
this->Centers->Delete();
this->Centers = nullptr;
}
if (this->Cutter)
{
this->Cutter->Delete();
this->Cutter = nullptr;
}
if (this->SelectedCells)
{
this->SelectedCells->Delete();
this->SelectedCells = nullptr;
}
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridPlaneCutter::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Plane: ( " << this->Plane[0] << " ) * X + ( " << this->Plane[1] << " ) * Y + ( "
<< this->Plane[2] << " ) * Z = " << this->Plane[3] << "\n";
if (this->Dual)
{
os << indent << "Dual: Yes\n";
}
else
{
os << indent << "Dual: No\n";
}
if (this->Points)
{
os << indent << "Points:\n";
this->Points->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "Points: ( none )\n";
}
if (this->Cells)
{
os << indent << "Cells:\n";
this->Cells->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "Cells: ( none )\n";
}
if (this->Leaves)
{
os << indent << "Leaves:\n";
this->Leaves->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "Leaves: ( none )\n";
}
if (this->Centers)
{
os << indent << "Centers:\n";
this->Centers->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "Centers: ( none )\n";
}
if (this->Cutter)
{
os << indent << "Cutter:\n";
this->Cutter->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "Cutter: ( none )\n";
}
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridPlaneCutter::FillOutputPortInformation(int, vtkInformation* info)
{
info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkPolyData");
return 1;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridPlaneCutter::Reset()
{
// Points and Cells are created in the constructor
if (this->Points)
{
this->Points->Delete();
}
this->Points = vtkPoints::New();
if (this->Cells)
{
this->Cells->Delete();
}
this->Cells = vtkCellArray::New();
if (this->Centers)
{
this->Centers->Initialize();
}
if (this->Leaves)
{
this->Leaves->Initialize();
}
if (this->Cutter)
{
this->Cutter->SetNumberOfContours(0);
}
if (this->SelectedCells)
{
this->SelectedCells->Initialize();
}
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridPlaneCutter::ProcessTrees(vtkHyperTreeGrid* input, vtkDataObject* outputDO)
{
vtkPolyData* output = vtkPolyData::SafeDownCast(outputDO);
if (!output)
{
vtkErrorMacro("Incorrect type of output: " << outputDO->GetClassName());
return 0;
}
// This filter works only with 3D grids
if (input->GetDimension() != 3)
{
vtkErrorMacro(<< "Bad input dimension:" << input->GetDimension());
return 0;
}
// Reset Data
this->Reset();
output->Initialize();
// Retrieve input point data
this->InData = input->GetCellData();
// Retrieve material mask
this->InMask = input->HasMask() ? input->GetMask() : nullptr;
// Compute cut on dual or primal input depending on specification
if (this->Dual)
{
// Initialize output point data
this->OutData = output->GetPointData();
this->OutData->CopyAllocate(this->InData);
// Storage for leaf indices
if (this->Leaves == nullptr)
{
this->Leaves = vtkIdList::New();
}
this->Leaves->SetNumberOfIds(8);
// Initialize storage for dual geometry
if (this->Centers == nullptr)
{
this->Centers = vtkPoints::New();
}
this->Centers->SetNumberOfPoints(8);
// Convert plane parameters into normal/origin specification
unsigned int maxId = 0;
if (fabs(this->Plane[1]) > fabs(this->Plane[0]))
{
maxId = 1;
}
if (fabs(this->Plane[2]) > fabs(this->Plane[maxId]))
{
maxId = 2;
}
double origin[] = { 0., 0., 0. };
origin[maxId] = this->Plane[3] / this->Plane[maxId];
vtkPlane* plane = vtkPlane::New();
plane->SetOrigin(origin);
plane->SetNormal(this->Plane[0], this->Plane[1], this->Plane[2]);
// Initialize plane cutter
if (this->Cutter == nullptr)
{
this->Cutter = vtkCutter::New();
}
this->Cutter->GenerateTrianglesOff();
this->Cutter->SetCutFunction(plane);
// Clean up
plane->Delete();
// Create storage to keep track of selected cells
if (this->SelectedCells == nullptr)
{
this->SelectedCells = vtkBitArray::New();
}
vtkIdType numCells = input->GetNumberOfCells();
this->SelectedCells->SetNumberOfTuples(numCells);
for (vtkIdType i = 0; i < numCells; ++i)
{
// Initialization is needed because not all cells are pre-processed
this->SelectedCells->SetValue(i, 0);
}
// First pass across tree roots to evince cells intersected by contours
vtkIdType index;
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
input->InitializeTreeIterator(it);
vtkNew<vtkHyperTreeGridNonOrientedGeometryCursor> cursor;
while (it.GetNextTree(index))
{
if (this->CheckAbort())
{
break;
}
// Initialize new geometric cursor at root of current input tree
input->InitializeNonOrientedGeometryCursor(cursor, index);
// Pre-process tree recursively
this->RecursivelyPreProcessTree(cursor);
} // it
// Second pass across tree roots: now compute isocontours recursively
input->InitializeTreeIterator(it);
vtkNew<vtkHyperTreeGridNonOrientedMooreSuperCursor> supercursor;
while (it.GetNextTree(index))
{
if (this->CheckAbort())
{
break;
}
// Initialize new Moore cursor at root of current tree
input->InitializeNonOrientedMooreSuperCursor(supercursor, index);
// Generate leaf cell centers recursively
this->RecursivelyProcessTreeDual(supercursor);
} // it
// Clean up
this->SelectedCells->Delete();
this->SelectedCells = nullptr;
} // if ( this->Dual )
else
{
// Initialize output cell data
this->OutData = output->GetCellData();
this->OutData->CopyAllocate(this->InData);
// Iterate over all hyper trees
vtkIdType index;
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
input->InitializeTreeIterator(it);
vtkNew<vtkHyperTreeGridNonOrientedGeometryCursor> cursor;
while (it.GetNextTree(index))
{
if (this->CheckAbort())
{
break;
}
// Initialize new geometric cursor at root of current tree
input->InitializeNonOrientedGeometryCursor(cursor, index);
// Generate leaf cell centers recursively
this->RecursivelyProcessTreePrimal(cursor);
} // it
} // else
// Set output geometry and topology
output->SetPoints(this->Points);
this->Points->FastDelete();
this->Points = nullptr;
output->SetPolys(this->Cells);
this->Cells->FastDelete();
this->Cells = nullptr;
// Clean and squeeze output
vtkCleanPolyData* cleaner = vtkCleanPolyData::New();
cleaner->ConvertPolysToLinesOff();
cleaner->SetInputData(output);
cleaner->Update();
output->ShallowCopy(cleaner->GetOutput());
output->Squeeze();
cleaner->Delete();
return 1;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridPlaneCutter::RecursivelyProcessTreePrimal(
vtkHyperTreeGridNonOrientedGeometryCursor* cursor)
{
// If cursor is at a masked cell stop recursion
vtkIdType inId = cursor->GetGlobalNodeIndex();
if (this->InMask && this->InMask->GetValue(inId))
{
return;
}
// Retrieve cursor geometry
double* origin = cursor->GetOrigin();
double* size = cursor->GetSize();
// Initialize cell coordinates
double cellCoords[8][3];
for (int i = 0; i < 8; ++i)
{
cellCoords[i][0] = (i & 1) ? origin[0] + size[0] : origin[0];
// Checking if the plane is equal to the boundary of a cell.
// If it is, we need to shift it a tiny bit.
// Check is done on all axis.
// NOTE: we set cellCoords to std::sqrt(VTK_DBL_MIN) if the plane passes by the origin
// because distance computation, needed later, requires squaring those values.
// Since VTK_DBL_MIN is the smallest normal double value, VTK_DBL_MIN*VTK_DBL_MIN == 0,
// and sqrt(VTK_DBL_MIN)*std::sqrt(VTK_DBL_MIN) == VTK_DBL_MIN, which is what we want
if (this->IsPlaneOrthogonalToXAxis())
{
if (cellCoords[i][0] == this->Plane[3])
{
cellCoords[i][0] += std::abs(cellCoords[i][0]) > std::sqrt(VTK_DBL_MIN)
? VTK_DBL_EPSILON * std::abs(cellCoords[i][0])
: std::sqrt(VTK_DBL_MIN);
}
}
cellCoords[i][1] = (i & 2) ? origin[1] + size[1] : origin[1];
if (this->IsPlaneOrthogonalToYAxis())
{
if (cellCoords[i][1] == this->Plane[3])
{
cellCoords[i][1] += std::abs(cellCoords[i][1]) > std::sqrt(VTK_DBL_MIN)
? VTK_DBL_EPSILON * std::abs(cellCoords[i][1])
: std::sqrt(VTK_DBL_MIN);
}
}
cellCoords[i][2] = (i & 4) ? origin[2] + size[2] : origin[2];
if (this->IsPlaneOrthogonalToZAxis())
{
if (cellCoords[i][2] == this->Plane[3])
{
cellCoords[i][2] += std::abs(cellCoords[i][2]) > std::sqrt(VTK_DBL_MIN)
? VTK_DBL_EPSILON * std::abs(cellCoords[i][2])
: std::sqrt(VTK_DBL_MIN);
}
}
}
const double SQRT_DBL_EPSILON = std::sqrt(VTK_DBL_EPSILON);
// Check cell-plane intersection
double functEval[8];
if (this->CheckIntersection(cellCoords, functEval))
{
// Create plane cut if cursor is at leaf
if (cursor->IsLeaf())
{
// Keep track of the number of intersection points
int n = 0;
// Storage for intersection points
double points[8][3];
// Iterate over cell vertices
for (int i = 0; i < 8; ++i)
{
// Check all cell edges
if (std::abs(functEval[i]) < SQRT_DBL_EPSILON)
{
// If current vertex is intersected then save it
memcpy(points[n], cellCoords[i], 3 * sizeof(double));
++n;
}
else
{
// Check every edge of the current vertex.
if (!(i & 1) && functEval[i] * functEval[i + 1] < 0)
{
// Edge in X
this->PlaneCut(i, i + 1, cellCoords, n, points);
}
if (!(i & 2) && functEval[i] * functEval[i + 2] < 0)
{
// Edge in Y
this->PlaneCut(i, i + 2, cellCoords, n, points);
}
if (!(i & 4) && functEval[i] * functEval[i + 4] < 0)
{
// Edge in Z
this->PlaneCut(i, i + 4, cellCoords, n, points);
}
} // else
} // i
// Now reorder points if necessary
this->ReorderCutPoints(n, points);
// Storage for face vertex IDs
vtkIdType ids[8];
for (int i = 0; i < n; ++i)
{
// Save points and get their IDs
ids[i] = this->Points->InsertNextPoint(points[i]);
}
// Insert next face
vtkIdType outId = this->Cells->InsertNextCell(n, ids);
// Copy face data from that of the cell from which it comes
this->OutData->CopyData(this->InData, inId, outId);
} // if ( cursor->IsLeaf() )
else
{
// Cursor is not at leaf, recurse to all children
int numChildren = cursor->GetNumberOfChildren();
for (int ichild = 0; ichild < numChildren; ++ichild)
{
if (this->CheckAbort())
{
break;
}
cursor->ToChild(ichild);
// Recurse
this->RecursivelyProcessTreePrimal(cursor);
cursor->ToParent();
} // ichild
} // else
} // CheckIntersection
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridPlaneCutter::RecursivelyPreProcessTree(
vtkHyperTreeGridNonOrientedGeometryCursor* cursor)
{
// If cursor is at a masked cell stop recursion
vtkIdType id = cursor->GetGlobalNodeIndex();
if (this->InMask && this->InMask->GetValue(id))
{
return false;
}
// A node is not selected until proven otherwise
bool selected = false;
// Retrieve cursor geometry
double* origin = cursor->GetOrigin();
double* size = cursor->GetSize();
// Initialize cell coordinates
double cellCoords[8][3];
for (int i = 0; i < 8; ++i)
{
cellCoords[i][0] = (i & 1) ? origin[0] + size[0] : origin[0];
cellCoords[i][1] = (i & 2) ? origin[1] + size[1] : origin[1];
cellCoords[i][2] = (i & 4) ? origin[2] + size[2] : origin[2];
}
// Check cell-plane intersection
if (this->CheckIntersection(cellCoords))
{
// Selected this node
if (cursor->IsLeaf())
{
selected = true;
} // if ( cursor->IsLeaf() )
else
{
// Cursor is not at leaf, recurse to all children
int numChildren = cursor->GetNumberOfChildren();
for (int ichild = 0; ichild < numChildren; ++ichild)
{
if (this->CheckAbort())
{
break;
}
cursor->ToChild(ichild);
// Recurse and keep track of whether this branch is selected
selected |= this->RecursivelyPreProcessTree(cursor);
cursor->ToParent();
} // ichild
} // else
} // if ( this->CheckIntersection )
// Update list of selected cells
this->SelectedCells->SetTuple1(id, selected);
// Return whether current node was selected
return selected;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridPlaneCutter::RecursivelyProcessTreeDual(
vtkHyperTreeGridNonOrientedMooreSuperCursor* cursor)
{
// If cursor is at a masked cell stop recursion
vtkIdType id = cursor->GetGlobalNodeIndex();
if (this->InMask && this->InMask->GetValue(id))
{
return;
}
// Descend further into input trees only if cursor is not a leaf
if (!cursor->IsLeaf())
{
// Check if cursor is at selected cell
if (!this->SelectedCells->GetTuple1(id))
{
// Cell is not selected until proven otherwise
bool selected = false;
// Iterate over all cursors of Von Neumann neighborhood around center
for (unsigned int neighbor = 0; neighbor < 26 && !selected; ++neighbor)
{
// Retrieve global index of neighbor
unsigned int indN = MooreCursors3D[neighbor];
if (cursor->HasTree(indN))
{
vtkIdType idN = cursor->GetGlobalNodeIndex(indN);
// Decide whether neighbor was selected
selected = (this->SelectedCells->GetTuple1(idN) != 0.0);
}
else
{
selected = false;
}
} // neighbor
// No dual cell with a corner at cursor center will be intersected
if (!selected)
{
return;
}
} // if ( this->SelectedCells->GetTuple1( id ) )
// Recurse to all children
int numChildren = cursor->GetNumberOfChildren();
for (int ichild = 0; ichild < numChildren; ++ichild)
{
if (this->CheckAbort())
{
break;
}
cursor->ToChild(ichild);
// Recurse
this->RecursivelyProcessTreeDual(cursor);
cursor->ToParent();
} // ichild
} // if ( ! cursor->IsLeaf() )
else
{
// Cursor is at leaf, iterate over its corners
for (unsigned int cornerIdx = 0; cornerIdx < 8; ++cornerIdx)
{
if (this->CheckAbort())
{
break;
}
// Cell is not selected until proven otherwise
bool owner = true;
// Iterate over every leaf touching the corner and check ownership
for (unsigned int leafIdx = 0; leafIdx < 8 && owner; ++leafIdx)
{
owner = cursor->GetCornerCursors(cornerIdx, leafIdx, this->Leaves);
} // leafIdx
// If cell owns dual cell, compute intersection thereof
if (owner)
{
// Create dual cell to be intersected as unstructured grid
vtkUnstructuredGrid* dual = vtkUnstructuredGrid::New();
dual->Allocate(1, 1);
dual->InsertNextCell(VTK_VOXEL, 8, First8Integers);
dual->GetPointData()->CopyAllocate(this->InData);
// Iterate over cell corners
double x[3];
for (int _cornerIdx = 0; _cornerIdx < 8; ++_cornerIdx)
{
// Get cursor corresponding to this corner
vtkIdType cursorId = this->Leaves->GetId(_cornerIdx);
// Retrieve neighbor coordinates and store them
cursor->GetPoint(cursorId, x);
this->Centers->SetPoint(_cornerIdx, x);
// Retrieve neighbor index and corresponding input scalar value
vtkIdType idN = cursor->GetGlobalNodeIndex(cursorId);
// Assign scalar value attached to this cell corner
dual->GetPointData()->CopyData(this->InData, idN, _cornerIdx);
} // _cornerIdx
// Assign geometry of dual cell
dual->SetPoints(this->Centers);
// Compute intersection with plane
this->Cutter->SetInputData(dual);
this->Cutter->Update();
// Append computed polygons if some are present in cutter output
vtkPolyData* pd = this->Cutter->GetOutput();
vtkIdType nPoints = pd->GetNumberOfPoints();
if (nPoints)
{
// Keep handle to cut point data
vtkPointData* pdata = pd->GetPointData();
// Append new points to existing cut points
vtkIdType offset = this->Points->GetNumberOfPoints();
double pt[3];
for (vtkIdType i = 0; i < nPoints; ++i)
{
// Retrieve cut point coordinates and insert them into output points
pd->GetPoint(i, pt);
this->Points->InsertNextPoint(pt);
// Copy cut point data to that of corresponding output point
this->OutData->CopyData(pdata, i, i + offset);
} // i
// Append new elements to existing cut element
vtkIdType ids[8];
vtkIdType nCells = pd->GetNumberOfCells();
for (int i = 0; i < nCells; ++i)
{
// Retrieve element vertex ids
vtkIdList* vertices = pd->GetCell(i)->GetPointIds();
// Appropriately offset vertex ids
vtkIdType n = vertices->GetNumberOfIds();
for (int j = 0; j < n; ++j)
{
ids[j] = vertices->GetId(j) + offset;
} // j
// Insert next cell with offset ids
this->Cells->InsertNextCell(n, ids);
} // i
} // if ( nPoints )
// Clean up
dual->Delete();
} // if ( owner )
} // cornerIdx
} // else
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridPlaneCutter::CheckIntersection(double cellCoords[8][3], double functEval[8])
{
// Iterate over cell vertices
int i;
for (i = 0; i < 8; ++i)
{
// Evaluate the plane in every coordinate
functEval[i] = cellCoords[i][0] * this->Plane[0] + cellCoords[i][1] * this->Plane[1] +
cellCoords[i][2] * this->Plane[2] - this->Plane[3];
} // i
// Evaluate plane equation at first corner
double firstVal = functEval[0];
// Check if there is any sign change
i = 7;
while (i && functEval[i] * firstVal > 0.)
{
--i;
}
// Intersection if while statement broke early
return (i != 0);
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridPlaneCutter::CheckIntersection(double cellCoords[8][3])
{
// Evaluate plane equation at first corner
double firstVal = cellCoords[0][0] * this->Plane[0] + cellCoords[0][1] * this->Plane[1] +
cellCoords[0][2] * this->Plane[2] - this->Plane[3];
// Check if there is any sign change
int i = 1;
bool sameSign = true;
while (i < 8 && sameSign)
{
double functEval = cellCoords[i][0] * this->Plane[0] + cellCoords[i][1] * this->Plane[1] +
cellCoords[i][2] * this->Plane[2] - this->Plane[3];
sameSign = (firstVal * functEval > 0);
++i;
}
return !sameSign;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridPlaneCutter::SetPlane(double a, double b, double c, double d)
{
assert(!(a == 0 && b == 0 && c == 0) && "Plane's normal equals zero");
this->Plane[0] = a;
this->Plane[1] = b;
this->Plane[2] = c;
this->Plane[3] = d;
if (a == 0.0 && b == 0.0)
{
this->AxisAlignment = 2;
}
else if (b == 0.0 && c == 0.0)
{
this->AxisAlignment = 0;
}
else if (a == 0.0 && c == 0.0)
{
this->AxisAlignment = 1;
}
else
{
this->AxisAlignment = -1;
}
this->Modified();
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridPlaneCutter::PlaneCut(
int i, int j, double cellCoords[8][3], int& n, double point[][3])
{
// The distance between vertex indices gives us the axis direction
if (j - i == 1)
{
// X direction
point[n][0] =
(this->Plane[3] - this->Plane[1] * cellCoords[i][1] - this->Plane[2] * cellCoords[i][2]) /
this->Plane[0];
point[n][1] = cellCoords[i][1];
point[n][2] = cellCoords[i][2];
} // if ( j - i == 1 )
else if (j - i == 2)
{
// Y direction
point[n][0] = cellCoords[i][0];
point[n][1] =
(this->Plane[3] - this->Plane[0] * cellCoords[i][0] - this->Plane[2] * cellCoords[i][2]) /
this->Plane[1];
point[n][2] = cellCoords[i][2];
} // else if ( j - i == 2 )
else // if ( j - i == 4 )
{
// Z direction
point[n][0] = cellCoords[i][0];
point[n][1] = cellCoords[i][1];
point[n][2] =
(this->Plane[3] - this->Plane[0] * cellCoords[i][0] - this->Plane[1] * cellCoords[i][1]) /
this->Plane[2];
} // else if ( j - i == 4 )
// Move to next point
++n;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridPlaneCutter::ReorderCutPoints(int n, double points[][3])
{
// Iterate over all polygonal vertices but the last one
for (int i = 0; i < n - 2; ++i)
{
// Search the closest point to i in the sense of sharing the most coordinates
int index = i + 1; // in practice a don't care, set to satisfy -Wuninitialized
int minDistance = 4;
for (int j = i + 1; j < n; ++j)
{
// Compute the distance: number of different coordinates
int distance = 0;
if (points[j][0] != points[i][0])
{
++distance;
}
if (points[j][1] != points[i][1])
{
++distance;
}
if (points[j][2] != points[i][2])
{
++distance;
}
if (distance < minDistance)
{
// Store the index of current point and update minDistance
index = j;
minDistance = distance;
}
}
if (index != i + 1)
{
// If the closest point is not i + 1, then swap point positions
double swap[3];
memcpy(swap, points[index], 3 * sizeof(double));
memcpy(points[index], points[i + 1], 3 * sizeof(double));
memcpy(points[i + 1], swap, 3 * sizeof(double));
}
}
}
VTK_ABI_NAMESPACE_END
|