1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkHyperTreeGridThreshold.h"
#include "vtkArrayDispatch.h"
#include "vtkBitArray.h"
#include "vtkCellData.h"
#include "vtkDataArrayRange.h"
#include "vtkHyperTree.h"
#include "vtkHyperTreeGrid.h"
#include "vtkIdTypeArray.h"
#include "vtkIndexedArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkThreadedTaskQueue.h"
#include "vtkUniformHyperTreeGrid.h"
#include "vtkHyperTreeGridNonOrientedCursor.h"
#include <cmath>
#include <limits>
#include <utility>
namespace
{
constexpr int MAX_MUTEX = 1024;
/*
* Pure abstract interface for implementing how to deal with output
* cell data during the thresholding
*/
struct CellDataManager
{
public:
CellDataManager(vtkCellData* inputData, vtkCellData* outputData)
: InputData(inputData)
, OutputData(outputData)
{
}
virtual ~CellDataManager() = default;
virtual void operator()(vtkIdType inputIndex, vtkIdType outputIndex) = 0;
virtual void WrapUp() = 0;
protected:
vtkCellData* InputData = nullptr;
vtkCellData* OutputData = nullptr;
};
/*
* Cell data management implementation for the DeepThreshold strategy.
* Implements a copy of the input data into the output data.
*/
struct CellDataCopier : public CellDataManager
{
public:
CellDataCopier(vtkCellData* inputData, vtkCellData* outputData)
: CellDataManager(inputData, outputData)
{
this->OutputData->CopyAllocate(this->InputData);
}
~CellDataCopier() override = default;
void operator()(vtkIdType inputIndex, vtkIdType outputIndex) override
{
this->OutputData->CopyData(this->InputData, inputIndex, outputIndex);
}
void WrapUp() override { this->OutputData->Squeeze(); }
};
/*
* Utility struct for dispatching input arrays and creating
* the corresponding output vtkIndexedArrays.
*/
struct IndexedArrayInitializer
{
public:
IndexedArrayInitializer(vtkIdTypeArray* handles, vtkCellData* output)
: Handles(handles)
, Output(output)
{
}
template <class ArrayT>
void operator()(ArrayT* input)
{
using ValueType = vtk::GetAPIType<ArrayT>;
vtkNew<vtkIndexedArray<ValueType>> indexed;
indexed->SetName(input->GetName());
indexed->SetNumberOfComponents(input->GetNumberOfComponents());
indexed->ConstructBackend(this->Handles, input);
this->Output->AddArray(indexed);
}
private:
vtkIdTypeArray* Handles = nullptr;
vtkCellData* Output = nullptr;
};
/*
* Cell data management implementation for the CopyStructureAndIndexArrays strategy.
* Implements an indexation of input cell data in the output using vtkIndexedArrays
* and a shared index mapping.
*/
struct CellDataIndexer : public CellDataManager
{
public:
CellDataIndexer(vtkCellData* inputData, vtkCellData* outputData)
: CellDataManager(inputData, outputData)
, IndirectionMap(vtkSmartPointer<vtkIdTypeArray>::New())
{
this->OutputData->CopyAllocate(this->InputData, 1, 1);
this->IndirectionMap->SetNumberOfComponents(1);
this->IndirectionMap->SetNumberOfTuples(0);
using SupportedArrays = vtkArrayDispatch::Arrays;
using Dispatcher = vtkArrayDispatch::DispatchByArray<SupportedArrays>;
for (vtkIdType iArr = 0; iArr < this->InputData->GetNumberOfArrays(); ++iArr)
{
auto inputArr = this->InputData->GetArray(iArr);
if (!inputArr)
{
// skip all arrays that are not data arrays
continue;
}
IndexedArrayInitializer initializer(this->IndirectionMap, this->OutputData);
if (!Dispatcher::Execute(inputArr, initializer))
{
initializer(inputArr);
}
}
}
void operator()(vtkIdType inputIndex, vtkIdType outputIndex) override
{
this->IndirectionMap->InsertValue(outputIndex, inputIndex);
}
void WrapUp() override
{
for (vtkIdType iArr = 0; iArr < this->OutputData->GetNumberOfArrays(); ++iArr)
{
auto arr = this->OutputData->GetArray(iArr);
if (!arr)
{
// skip all arrays that are not data arrays
continue;
}
arr->SetNumberOfTuples(this->IndirectionMap->GetNumberOfTuples());
}
}
private:
vtkSmartPointer<vtkIdTypeArray> IndirectionMap;
};
}
VTK_ABI_NAMESPACE_BEGIN
//------------------------------------------------------------------------------
struct vtkHyperTreeGridThreshold::Internals
{
std::unique_ptr<::CellDataManager> CDManager;
};
//------------------------------------------------------------------------------
vtkStandardNewMacro(vtkHyperTreeGridThreshold);
//------------------------------------------------------------------------------
vtkHyperTreeGridThreshold::vtkHyperTreeGridThreshold()
: Internal(new Internals)
{
// Use minimum double value by default for lower threshold bound
this->LowerThreshold = std::numeric_limits<double>::min();
// Use maximum double value by default for upper threshold bound
this->UpperThreshold = std::numeric_limits<double>::max();
// This filter always creates an output with a material mask
this->OutMask = vtkBitArray::New();
// Output indices begin at 0
this->CurrentId = 0;
// Process active point scalars by default
this->SetInputArrayToProcess(
0, 0, 0, vtkDataObject::FIELD_ASSOCIATION_POINTS_THEN_CELLS, vtkDataSetAttributes::SCALARS);
// Input scalars point to null by default
this->InScalars = nullptr;
this->AppropriateOutput = true;
}
//------------------------------------------------------------------------------
vtkHyperTreeGridThreshold::~vtkHyperTreeGridThreshold()
{
this->OutMask->Delete();
this->OutMask = nullptr;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridThreshold::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "LowerThreshold: " << this->LowerThreshold << endl;
os << indent << "UpperThreshold: " << this->UpperThreshold << endl;
os << indent << "OutMask: " << this->OutMask << endl;
os << indent << "CurrentId: " << this->CurrentId << endl;
if (this->InScalars)
{
os << indent << "InScalars:\n";
this->InScalars->PrintSelf(os, indent.GetNextIndent());
}
else
{
os << indent << "InScalars: (none)\n";
}
os << indent << "MemoryStrategy: " << this->MemoryStrategy << std::endl;
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridThreshold::FillOutputPortInformation(int, vtkInformation* info)
{
info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkHyperTreeGrid");
return 1;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridThreshold::ThresholdBetween(double minimum, double maximum)
{
this->LowerThreshold = minimum;
this->UpperThreshold = maximum;
this->Modified();
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridThreshold::ProcessTrees(vtkHyperTreeGrid* input, vtkDataObject* outputDO)
{
// Downcast output data object to hyper tree grid
vtkHyperTreeGrid* output = vtkHyperTreeGrid::SafeDownCast(outputDO);
if (!output)
{
vtkErrorMacro("Incorrect type of output: " << outputDO->GetClassName());
return 0;
}
// Retrieve scalar quantity of interest
this->InScalars = this->GetInputArrayToProcess(0, input);
if (!this->InScalars)
{
vtkWarningMacro(<< "No scalar data to threshold");
return 1;
}
// Retrieve material mask
this->InMask = input->HasMask() ? input->GetMask() : nullptr;
if (this->MemoryStrategy == MaskInput)
{
output->ShallowCopy(input);
// Create mutexes covering the whole array for concurrent accesses to the same byte of
// vtkBitArray
const vtkIdType nbCells = output->GetNumberOfCells();
const vtkIdType nbBytesMask = nbCells / 8;
const vtkIdType nbMutexes = std::max<vtkIdType>(std::min<vtkIdType>(MAX_MUTEX, nbBytesMask), 1);
this->ArrayMutexSize = nbCells / nbMutexes + 1;
if (this->ArrayMutexSize % 8 != 0)
{
// Align the size of mutex array with byte delimitation
this->ArrayMutexSize += 8 - this->ArrayMutexSize % 8;
}
this->ArrayMutexSize = std::max(this->ArrayMutexSize, 8);
assert("ArrayMutexSize is a multiple of 8" && this->ArrayMutexSize % 8 == 0);
std::vector<std::mutex> list(nbMutexes);
this->OutMaskMutexes.swap(list); // std::mutex is not movable, need to use a swap
this->OutMask->SetNumberOfTuples(output->GetNumberOfCells());
// Iterate over all input and output hyper trees
vtkIdType outIndex;
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
output->InitializeTreeIterator(it);
vtkThreadedTaskQueue<void, int> queue(
[this, &output](int startIndex)
{
vtkNew<vtkHyperTreeGridNonOrientedCursor> outCursor;
// Initialize new grid cursor at root of current input tree
output->InitializeNonOrientedCursor(outCursor, startIndex);
// Limit depth recursively
this->RecursivelyProcessTreeWithCreateNewMask(outCursor);
},
true);
while (it.GetNextTree(outIndex))
{
if (this->CheckAbort())
{
break;
}
#if VTK_ID_TYPE_IMPL != VTK_INT
queue.Push(static_cast<int>(outIndex));
#else
// if cast becomes no-op, convert outIndex from lvalue to rvalue
// (avoids "can't convert from 'int' to 'int&&'" error for MSVC)
queue.Push(std::move(outIndex));
#endif
}
queue.Flush();
}
else if (this->MemoryStrategy == CopyStructureAndIndexArrays ||
this->MemoryStrategy == DeepThreshold)
{
// Set grid parameters
output->SetDimensions(input->GetDimensions());
output->SetTransposedRootIndexing(input->GetTransposedRootIndexing());
output->SetBranchFactor(input->GetBranchFactor());
output->CopyCoordinates(input);
output->SetHasInterface(input->GetHasInterface());
output->SetInterfaceNormalsName(input->GetInterfaceNormalsName());
output->SetInterfaceInterceptsName(input->GetInterfaceInterceptsName());
// Initialize cell data manager
switch (this->MemoryStrategy)
{
// MaskInput is handled above
case CopyStructureAndIndexArrays:
this->Internal->CDManager = std::unique_ptr<::CellDataManager>(
new ::CellDataIndexer(input->GetCellData(), output->GetCellData()));
break;
case DeepThreshold:
this->Internal->CDManager = std::unique_ptr<::CellDataManager>(
new ::CellDataCopier(input->GetCellData(), output->GetCellData()));
break;
default:
this->Internal->CDManager = std::unique_ptr<::CellDataManager>(
new ::CellDataCopier(input->GetCellData(), output->GetCellData()));
vtkWarningMacro("No switch case for given MemoryStrategy "
<< this->MemoryStrategy << " defaulting to DeepThreshold");
break;
}
// Output indices begin at 0
this->CurrentId = 0;
// Iterate over all input and output hyper trees
vtkIdType inIndex;
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
input->InitializeTreeIterator(it);
vtkNew<vtkHyperTreeGridNonOrientedCursor> inCursor;
vtkNew<vtkHyperTreeGridNonOrientedCursor> outCursor;
while (it.GetNextTree(inIndex))
{
if (this->CheckAbort())
{
break;
}
// Initialize new cursor at root of current input tree
input->InitializeNonOrientedCursor(inCursor, inIndex);
// Initialize new cursor at root of current output tree
output->InitializeNonOrientedCursor(outCursor, inIndex, true);
// Limit depth recursively
this->RecursivelyProcessTree(inCursor, outCursor);
} // it
this->Internal->CDManager->WrapUp();
}
else
{
vtkErrorMacro(
"No corresponding MemoryStrategyChoice for MemoryStrategy = " << this->MemoryStrategy);
return 0;
}
// Squeeze and set output material mask if necessary
this->OutMask->Squeeze();
output->SetMask(this->OutMask);
this->UpdateProgress(1.);
return 1;
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridThreshold::RecursivelyProcessTree(
vtkHyperTreeGridNonOrientedCursor* inCursor, vtkHyperTreeGridNonOrientedCursor* outCursor)
{
// Retrieve global index of input cursor
vtkIdType inId = inCursor->GetGlobalNodeIndex();
// Increase index count on output: postfix is intended
vtkIdType outId = this->CurrentId++;
// Copy out cell data from that of input cell
if (!this->Internal->CDManager)
{
vtkErrorMacro("Must set the CellDataManager before processing trees");
return false;
}
(*(this->Internal->CDManager))(inId, outId);
// Retrieve output tree and set global index of output cursor
vtkHyperTree* outTree = outCursor->GetTree();
outTree->SetGlobalIndexFromLocal(outCursor->GetVertexId(), outId);
// Flag to recursively decide whether a tree node should discarded
bool discard = true;
if (this->InMask && this->InMask->GetValue(inId))
{
// Mask output cell if necessary
this->OutMask->InsertTuple1(outId, discard);
// Return whether current node is within range
return discard;
}
// Descend further into input trees only if cursor is not at leaf
if (!inCursor->IsLeaf())
{
// Cursor is not at leaf, subdivide output tree one level further
outCursor->SubdivideLeaf();
// If input cursor is neither at leaf nor at maximum depth, recurse to all children
int numChildren = inCursor->GetNumberOfChildren();
for (int ichild = 0; ichild < numChildren; ++ichild)
{
if (this->CheckAbort())
{
break;
}
// Descend into child in input grid as well
inCursor->ToChild(ichild);
// Descend into child in output grid as well
outCursor->ToChild(ichild);
// Recurse and keep track of whether some children are kept
discard &= this->RecursivelyProcessTree(inCursor, outCursor);
// Return to parent in input grid
outCursor->ToParent();
// Return to parent in output grid
inCursor->ToParent();
} // child
} // if (! inCursor->IsLeaf() && inCursor->GetCurrentDepth() < this->Depth)
else
{
// Input cursor is at leaf, check whether it is within range
double value = this->InScalars->GetTuple1(inId);
if (!(this->InMask && this->InMask->GetValue(inId)) && value >= this->LowerThreshold &&
value <= this->UpperThreshold)
{
// Cell is not masked and is within range, keep it
discard = false;
}
} // else
// Mask output cell if necessary
this->OutMask->InsertTuple1(outId, discard);
// Return whether current node is within range
return discard;
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridThreshold::RecursivelyProcessTreeWithCreateNewMask(
vtkHyperTreeGridNonOrientedCursor* outCursor)
{
// Retrieve global index of input cursor
vtkIdType outId = outCursor->GetGlobalNodeIndex();
// Flag to recursively decide whether a tree node should discarded
bool discard = true;
if (this->InMask)
{
if (this->InMask->GetValue(outId))
{
// Mask output cell if necessary
this->SafeInsertOutMask(outId, discard);
// Return whether current node is within range
return discard;
}
}
// Descend further into input trees only if cursor is not at leaf
if (!outCursor->IsLeaf())
{
// If input cursor is neither at leaf nor at maximum depth, recurse to all children
int numChildren = outCursor->GetNumberOfChildren();
for (int ichild = 0; ichild < numChildren; ++ichild)
{
// Recurse and keep track of whether some children are kept
discard &= this->RecursivelyProcessChild(outCursor, ichild);
}
}
else
{
// Input cursor is at leaf, check whether it is within range
std::array<double, 1> val{ 0.0 };
this->InScalars->GetTuple(outId, val.data());
discard = val[0] < this->LowerThreshold || val[0] > this->UpperThreshold;
}
// Mask output cell if necessary
this->SafeInsertOutMask(outId, discard);
// Return whether current node is within range
return discard;
}
//------------------------------------------------------------------------------
bool vtkHyperTreeGridThreshold::RecursivelyProcessChild(
vtkHyperTreeGridNonOrientedCursor* outCursor, int ichild)
{
assert("pre: has child ichild" && ichild < outCursor->GetNumberOfChildren());
outCursor->ToChild(ichild);
bool discard = this->RecursivelyProcessTreeWithCreateNewMask(outCursor);
outCursor->ToParent();
return discard;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridThreshold::SafeInsertOutMask(vtkIdType tupleIdx, double value)
{
assert("pre: ArrayMutexSize not null" && this->ArrayMutexSize > 0);
const std::lock_guard<std::mutex> lock(this->OutMaskMutexes[tupleIdx / this->ArrayMutexSize]);
this->OutMask->InsertTuple1(tupleIdx, value);
}
VTK_ABI_NAMESPACE_END
|