1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkHyperTreeGridToUnstructuredGrid.h"
#include "vtkBitArray.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkHyperTreeGrid.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkUnstructuredGrid.h"
#include "vtkHyperTreeGridNonOrientedGeometryCursor.h"
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkHyperTreeGridToUnstructuredGrid);
//------------------------------------------------------------------------------
vtkHyperTreeGridToUnstructuredGrid::vtkHyperTreeGridToUnstructuredGrid()
: Points(nullptr)
, Cells(nullptr)
, Dimension(0)
, Orientation(0)
, Axes(nullptr)
, AddOriginalIds(true)
, OriginalIds(nullptr)
{
}
//------------------------------------------------------------------------------
// The class members are only used during process and are destroyed once the
// process is finished to reduce stack size during recursive calls.
vtkHyperTreeGridToUnstructuredGrid::~vtkHyperTreeGridToUnstructuredGrid() = default;
//------------------------------------------------------------------------------
void vtkHyperTreeGridToUnstructuredGrid::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridToUnstructuredGrid::FillOutputPortInformation(int, vtkInformation* info)
{
info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkUnstructuredGrid");
return 1;
}
//------------------------------------------------------------------------------
int vtkHyperTreeGridToUnstructuredGrid::ProcessTrees(
vtkHyperTreeGrid* input, vtkDataObject* outputDO)
{
// Downcast output data object to hyper tree grid
vtkUnstructuredGrid* output = vtkUnstructuredGrid::SafeDownCast(outputDO);
if (!output)
{
vtkErrorMacro("Incorrect type of output: " << outputDO->GetClassName());
return 0;
}
// Set instance variables needed for this conversion
this->Points = vtkPoints::New();
this->Cells = vtkCellArray::New();
this->Dimension = input->GetDimension();
this->Orientation = input->GetOrientation();
this->Axes = input->GetAxes();
// Initialize output cell data
this->InData = input->GetCellData();
this->OutData = output->GetCellData();
this->OutData->CopyAllocate(this->InData);
if (this->AddOriginalIds)
{
this->OriginalIds = vtkIdTypeArray::New();
this->OriginalIds->SetName("OriginalIds");
this->OriginalIds->SetNumberOfComponents(1);
this->OriginalIds->SetNumberOfTuples(input->GetNumberOfLeaves());
}
// Iterate over all hyper trees
vtkIdType index;
vtkHyperTreeGrid::vtkHyperTreeGridIterator it;
input->InitializeTreeIterator(it);
vtkNew<vtkHyperTreeGridNonOrientedGeometryCursor> cursor;
while (it.GetNextTree(index))
{
if (this->CheckAbort())
{
break;
}
// Initialize new geometric cursor at root of current tree
input->InitializeNonOrientedGeometryCursor(cursor, index);
// Convert hyper tree into unstructured mesh recursively
this->RecursivelyProcessTree(cursor);
} // it
// Set output geometry and topology
output->SetPoints(this->Points);
switch (this->Dimension)
{
case 1:
// 1D cells are lines
output->SetCells(VTK_LINE, this->Cells);
break;
case 2:
// 2D cells are quadrilaterals
output->SetCells(VTK_PIXEL, this->Cells);
break;
case 3:
// 3D cells are voxels (i.e. hexahedra with indexing order equal to that of cursors)
output->SetCells(VTK_VOXEL, this->Cells);
break;
default:
break;
} // switch ( this->Dimension )
if (this->AddOriginalIds)
{
this->OutData->AddArray(this->OriginalIds);
this->OriginalIds->FastDelete();
this->OriginalIds = nullptr;
}
this->Points->FastDelete();
this->Cells->FastDelete();
this->Points = nullptr;
this->Cells = nullptr;
return 1;
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridToUnstructuredGrid::RecursivelyProcessTree(
vtkHyperTreeGridNonOrientedGeometryCursor* cursor)
{
// If leaf is masked, skip it
if (cursor->IsMasked())
{
return;
}
// Create unstructured output if cursor is at leaf
if (cursor->IsLeaf())
{
// Cursor is at leaf, retrieve its global index
vtkIdType id = cursor->GetGlobalNodeIndex();
// Create cell
this->AddCell(id, cursor->GetOrigin(), cursor->GetSize());
} // if ( cursor->IsLeaf() )
else
{
// Cursor is not at leaf, recurse to all children
int numChildren = cursor->GetNumberOfChildren();
for (int ichild = 0; ichild < numChildren; ++ichild)
{
if (this->CheckAbort())
{
break;
}
cursor->ToChild(ichild);
// Recurse
this->RecursivelyProcessTree(cursor);
cursor->ToParent();
} // child
} // else
}
//------------------------------------------------------------------------------
void vtkHyperTreeGridToUnstructuredGrid::AddCell(vtkIdType inId, double* origin, double* size)
{
// Storage for point coordinates
double pt[] = { 0., 0., 0. };
// Storage for cell vertex IDs
vtkIdType ids[8];
// Storage for cell ID
vtkIdType outId;
// First cell vertex is always at origin of cursor
// Add vertex #0 : (0,0)
memcpy(pt, origin, 3 * sizeof(double));
ids[0] = this->Points->InsertNextPoint(pt);
// Create remaining 2^d - 1 vertices depending on dimension
switch (this->Dimension)
{
case 1:
{
assert("pre: internal" && this->Orientation == this->Axes[0]);
// In 1D there is only one other vertex
pt[0] = origin[this->Orientation] + size[this->Orientation];
ids[1] = this->Points->InsertNextPoint(pt);
// Insert next line
outId = this->Cells->InsertNextCell(2, ids);
break;
}
case 2:
{
unsigned int axis1 = this->Axes[0];
unsigned int axis2 = this->Axes[1];
// Add vertex #1 : (1,0)
pt[axis1] = origin[axis1] + size[axis1];
pt[axis2] = origin[axis2];
ids[1] = this->Points->InsertNextPoint(pt);
// Add vertex #2 : (0,1)
pt[axis1] = origin[axis1];
pt[axis2] = origin[axis2] + size[axis2];
ids[2] = this->Points->InsertNextPoint(pt);
// Add vertex #3 : (1,1)
pt[axis1] = origin[axis1] + size[axis1];
pt[axis2] = origin[axis2] + size[axis2];
ids[3] = this->Points->InsertNextPoint(pt);
// Insert next quadrangle
outId = this->Cells->InsertNextCell(4, ids);
break;
}
case 3:
{
// z=0 plane
pt[2] = origin[2];
// Add vertex #1 : (1,0,0)
pt[0] = origin[0] + size[0];
pt[1] = origin[1];
ids[1] = this->Points->InsertNextPoint(pt);
// Add vertex #2 : (0,1,0)
pt[0] = origin[0];
pt[1] = origin[1] + size[1];
ids[2] = this->Points->InsertNextPoint(pt);
// Add vertex #3 : (1,1,0)
pt[0] = origin[0] + size[0];
pt[1] = origin[1] + size[1];
ids[3] = this->Points->InsertNextPoint(pt);
// z=1 plane
pt[2] = origin[2] + size[2];
// Add vertex #4 : (0,0,1)
pt[0] = origin[0];
pt[1] = origin[1];
ids[4] = this->Points->InsertNextPoint(pt);
// Add vertex #5 : (1,0,1)
pt[0] = origin[0] + size[0];
pt[1] = origin[1];
ids[5] = this->Points->InsertNextPoint(pt);
// Add vertex #6 : (0,1,1)
pt[0] = origin[0];
pt[1] = origin[1] + size[1];
ids[6] = this->Points->InsertNextPoint(pt);
// Add vertex #7 : (1,1,1)
pt[0] = origin[0] + size[0];
pt[1] = origin[1] + size[1];
ids[7] = this->Points->InsertNextPoint(pt);
// Insert next voxel
outId = this->Cells->InsertNextCell(8, ids);
break;
}
default:
{
return;
}
} // switch ( this->Dimension )
// Copy output data from input
this->OutData->CopyData(this->InData, inId, outId);
// And the global id if needed
if (this->AddOriginalIds)
{
this->OriginalIds->SetTuple1(outId, inId);
}
}
VTK_ABI_NAMESPACE_END
|