1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkContourLoopExtraction.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkExecutive.h"
#include "vtkGarbageCollector.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkLine.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkPoints.h"
#include "vtkPolyData.h"
#include "vtkPolygon.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include <cfloat>
#include <vector>
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkContourLoopExtraction);
//------------------------------------------------------------------------------
namespace
{
// Note on the definition of parametric coordinates: Given a sequence of
// lines segments (vi,vi+1) that form a primitive (e.g., polyline or
// polygon), the parametric coordinate t along the primitive is
// [i,i+1). Any point (like an intersection point on the segment) is i+t,
// where 0 <= t < 1.
// Infrastructure for cropping----------------------------------------------
struct LoopPoint
{
double T; // parametric coordinate along linked lines
vtkIdType Id;
LoopPoint(double t, vtkIdType id)
: T(t)
, Id(id)
{
}
};
// Special sort operation on primitive parametric coordinate T-------------
bool PointSorter(LoopPoint const& lhs, LoopPoint const& rhs)
{
return lhs.T < rhs.T;
}
// Vectors are used to hold points.
typedef std::vector<LoopPoint> LoopPointType;
// Update the scalar range-------------------------------------------------
void UpdateRange(vtkDataArray* scalars, vtkIdType pid, double range[2])
{
if (!scalars)
{
return;
}
int numComp = scalars->GetNumberOfComponents();
double s;
for (int i = 0; i < numComp; ++i)
{
s = scalars->GetComponent(pid, i);
range[0] = (s < range[0] ? s : range[0]);
range[1] = (s > range[1] ? s : range[1]);
}
}
// March along connected lines to the end----------------------------------
// pts[0] is assumed to be the starting point and already inserted.
vtkIdType TraverseLoop(double dir, vtkPolyData* polyData, vtkIdType lineId, vtkIdType start,
LoopPointType& sortedPoints, std::vector<signed char>& visited, vtkDataArray* scalars,
double range[2])
{
vtkIdType last = start, numInserted = 0;
double t = 0.0;
bool terminated = false;
vtkIdType ncells;
vtkIdType npts;
const vtkIdType* pts;
vtkIdType* cells;
vtkIdType nei;
vtkIdType lastCell = lineId;
polyData->GetCellPoints(lineId, npts, pts);
// Recall that we are working with 2-pt lines
while (!terminated)
{
last = (pts[0] != last ? pts[0] : pts[1]);
numInserted++;
t = dir * static_cast<double>(numInserted);
sortedPoints.emplace_back(t, last);
UpdateRange(scalars, last, range);
polyData->GetPointCells(last, ncells, cells);
if (ncells == 1 || last == start) // this is the last point
{
return last;
}
else if (ncells == 2) // continue along loop
{
nei = (cells[0] != lastCell ? cells[0] : cells[1]);
polyData->GetCellPoints(nei, npts, pts);
visited[nei] = 1;
lastCell = nei;
}
else // non-manifold, for now just quit (TODO: break apart loops)
{
terminated = true;
break;
}
}
return last;
}
// March along connected lines to the end----------------------------------
void OutputPolygon(LoopPointType& sortedPoints, vtkPoints* inPts, vtkCellArray* outLines,
vtkCellArray* outPolys, int loopClosure)
{
// Check to see that last point is the same as the first. Such a loop is
// closed and can be directly output. Otherwise, check on the strategy
// for closing the loop and close as appropriate.
vtkIdType num = static_cast<vtkIdType>(sortedPoints.size());
if (sortedPoints[0].Id == sortedPoints[num - 1].Id)
{
--num;
sortedPoints.erase(sortedPoints.begin() + num);
}
else if (loopClosure == VTK_LOOP_CLOSURE_ALL)
{
// do nothing and it will close between the first and last points
}
// If here we assume that the loop begins and ends on the given bounding
// box (i.e. the boundary of the data). Close the loop by walking the
// bounding box in the plane defined by the Normal plus the loop start
// point.
else if (loopClosure == VTK_LOOP_CLOSURE_BOUNDARY)
{
// First check the simple case, complete the loop along horizontal or
// vertical lines (assumed on the boundary).
double p0[3], p1[3], delX, delY;
inPts->GetPoint(sortedPoints[0].Id, p0);
inPts->GetPoint(sortedPoints[num - 1].Id, p1);
delX = fabs(p0[0] - p1[0]);
delY = fabs(p0[1] - p1[1]);
// if no change in either the x or y direction just return, the loop will complete
if (delX < FLT_EPSILON || delY < FLT_EPSILON)
{
// do nothing loop will complete; points are along same (horizontal or vertical) boundary
// edge
}
// Otherwise check if the points are on the "boundary" and then complete the loop
// along the shortest path around the boundary.
else
{
return;
}
}
// Don't close
else // loopClosure == VTK_LOOP_CLOSURE_OFF
{
return;
}
// Return if not a valid loop
if (num < 3)
{
return;
}
// If here can output the loop
if (outLines)
{
outLines->InsertNextCell(num + 1);
for (vtkIdType i = 0; i < num; ++i)
{
outLines->InsertCellPoint(sortedPoints[i].Id);
}
outLines->InsertCellPoint(sortedPoints[0].Id);
}
if (outPolys)
{
outPolys->InsertNextCell(num);
for (vtkIdType i = 0; i < num; ++i)
{
outPolys->InsertCellPoint(sortedPoints[i].Id);
}
}
}
using PointMap = std::vector<vtkIdType>;
// Helper functions to clean output data
template <typename SType>
void MarkUses(vtkIdType numIds, SType* connArray, PointMap& ptMap)
{
for (auto i = 0; i < numIds; ++i)
{
ptMap[connArray->GetValue(i)] = 1;
}
}
// Helper function to in place mark point usage
void MarkPointUses(vtkCellArray* ca, vtkIdType numConn, PointMap& ptMap)
{
if (ca->IsStorage64Bit())
{
vtkTypeInt64Array* conn = ca->GetConnectivityArray64();
MarkUses<vtkTypeInt64Array>(numConn, conn, ptMap);
}
else
{
vtkTypeInt32Array* conn = ca->GetConnectivityArray32();
MarkUses<vtkTypeInt32Array>(numConn, conn, ptMap);
}
}
// Helper functions to clean output data
template <typename SType>
void UpdateUses(vtkIdType numIds, SType* connArray, PointMap& ptMap)
{
for (auto i = 0; i < numIds; ++i)
{
connArray->SetValue(i, ptMap[connArray->GetValue(i)]);
}
}
// Helper function to in place update point numbering
void UpdatePointUses(vtkCellArray* ca, vtkIdType numConn, PointMap& ptMap)
{
if (ca->IsStorage64Bit())
{
vtkTypeInt64Array* conn = ca->GetConnectivityArray64();
UpdateUses<vtkTypeInt64Array>(numConn, conn, ptMap);
}
else
{
vtkTypeInt32Array* conn = ca->GetConnectivityArray32();
UpdateUses<vtkTypeInt32Array>(numConn, conn, ptMap);
}
}
// Discard unused points; renumber output polylines and polygons.
// Performs this operation in place.
void CleanOutputPoints(vtkPolyData* output)
{
// Mark points used by lines or polygons, and create a point map
// of old point ids to new point ids.
vtkIdType numPts = output->GetNumberOfPoints();
std::vector<vtkIdType> ptMap(numPts, 0);
vtkPoints* pts = output->GetPoints();
// Get the connectivity of the lines and polygons. Run through them
// and mark points that are used.
vtkCellArray* lines = output->GetLines();
vtkIdType numLinesIds = lines->GetNumberOfConnectivityIds();
if (numLinesIds > 0)
{
MarkPointUses(lines, numLinesIds, ptMap);
}
vtkCellArray* polys = output->GetPolys();
vtkIdType numPolysIds = polys->GetNumberOfConnectivityIds();
if (numPolysIds > 0)
{
MarkPointUses(polys, numPolysIds, ptMap);
}
// Renumber points / build the point map
vtkNew<vtkPoints> newPts;
vtkIdType newId;
for (auto pId = 0; pId < numPts; ++pId)
{
if (ptMap[pId] != 0)
{
newId = newPts->InsertNextPoint(pts->GetPoint(pId));
ptMap[pId] = newId;
}
}
output->SetPoints(newPts);
// Update the point ids (in place).
if (numLinesIds > 0)
{
UpdatePointUses(lines, numLinesIds, ptMap);
}
if (numPolysIds > 0)
{
UpdatePointUses(polys, numPolysIds, ptMap);
}
} // CleanOutputPoints
} // anonymous namespace
//------------------------------------------------------------------------------
// Instantiate object with empty loop.
vtkContourLoopExtraction::vtkContourLoopExtraction()
{
this->LoopClosure = VTK_LOOP_CLOSURE_BOUNDARY;
this->ScalarThresholding = false;
this->ScalarRange[0] = 0.0;
this->ScalarRange[1] = 1.0;
this->Normal[0] = 0.0;
this->Normal[1] = 0.0;
this->Normal[2] = 1.0;
this->OutputMode = VTK_OUTPUT_POLYGONS;
this->CleanPoints = true;
}
//------------------------------------------------------------------------------
vtkContourLoopExtraction::~vtkContourLoopExtraction() = default;
//------------------------------------------------------------------------------
int vtkContourLoopExtraction::RequestData(vtkInformation* vtkNotUsed(request),
vtkInformationVector** inputVector, vtkInformationVector* outputVector)
{
// get the info objects
vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
vtkInformation* outInfo = outputVector->GetInformationObject(0);
// get the input and output
vtkPolyData* input = vtkPolyData::SafeDownCast(inInfo->Get(vtkDataObject::DATA_OBJECT()));
vtkPolyData* output = vtkPolyData::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));
// Initialize and check data
vtkDebugMacro(<< "Loop extraction...");
vtkPoints* points = input->GetPoints();
vtkIdType numPts;
if (!points || (numPts = input->GetNumberOfPoints()) < 1)
{
vtkErrorMacro("Input contains no points");
return 1;
}
vtkCellArray* lines = input->GetLines();
vtkIdType numLines = lines->GetNumberOfCells();
if (numLines < 1)
{
vtkErrorMacro("Input contains no lines");
return 1;
}
vtkPointData* inPD = input->GetPointData();
vtkDataArray* scalars = nullptr;
if (this->ScalarThresholding)
{
scalars = inPD->GetScalars();
}
// Prepare output
output->SetPoints(points);
vtkSmartPointer<vtkCellArray> outLines;
vtkSmartPointer<vtkCellArray> outPolys;
if (this->OutputMode == VTK_OUTPUT_POLYLINES || this->OutputMode == VTK_OUTPUT_BOTH)
{
outLines.TakeReference(vtkCellArray::New());
output->SetLines(outLines);
}
if (this->OutputMode == VTK_OUTPUT_POLYGONS || this->OutputMode == VTK_OUTPUT_BOTH)
{
outPolys.TakeReference(vtkCellArray::New());
output->SetPolys(outPolys);
}
output->GetPointData()->PassData(inPD);
// Create a clean polydata containing only line segments and without other
// topological types. This simplifies the filter.
vtkIdType npts;
const vtkIdType* pts;
vtkIdType lineId;
vtkNew<vtkCellArray> newLines;
newLines->AllocateEstimate(numLines, 2);
for (lineId = 0, lines->InitTraversal(); lines->GetNextCell(npts, pts); ++lineId)
{
for (int i = 0; i < (npts - 1); ++i)
{
newLines->InsertNextCell(2, pts + i);
}
}
vtkNew<vtkPolyData> polyData;
polyData->SetPoints(points);
polyData->SetLines(newLines);
polyData->GetPointData()->PassData(inPD);
polyData->BuildLinks();
// Keep track of what cells are visited
numLines = newLines->GetNumberOfCells();
std::vector<signed char> visited(numLines, 0);
// Loop over all lines, visit each one. Build a loop from the seed line if
// not visited.
vtkIdType start, rightEnd;
LoopPointType sortedPoints;
double range[2];
for (lineId = 0, newLines->InitTraversal(); newLines->GetNextCell(npts, pts); ++lineId)
{
if (this->CheckAbort())
{
break;
}
if (!visited[lineId])
{
visited[lineId] = 1;
start = pts[0];
sortedPoints.clear();
sortedPoints.emplace_back(0.0, start);
range[0] = VTK_FLOAT_MAX;
range[1] = VTK_FLOAT_MIN;
UpdateRange(scalars, start, range);
rightEnd = TraverseLoop(1.0, polyData, lineId, start, sortedPoints, visited, scalars, range);
if (rightEnd == start)
{
// extract loop, we've traversed all the way around
if (!scalars || (range[0] <= this->ScalarRange[1] && range[1] >= this->ScalarRange[0]))
{
OutputPolygon(sortedPoints, points, outLines, outPolys, this->LoopClosure);
}
}
else
{
// go the other direction and see where we end up
TraverseLoop(-1.0, polyData, lineId, start, sortedPoints, visited, scalars, range);
std::sort(sortedPoints.begin(), sortedPoints.end(), &PointSorter);
OutputPolygon(sortedPoints, points, outLines, outPolys, this->LoopClosure);
}
} // if not visited start a loop
}
if (this->CleanPoints)
{
CleanOutputPoints(output);
}
// Debug information
if (outLines != nullptr)
{
vtkDebugMacro(<< "Generated " << outLines->GetNumberOfCells() << " lines\n");
}
if (outPolys != nullptr)
{
vtkDebugMacro(<< "Generated " << outPolys->GetNumberOfCells() << " polygons\n");
}
return 1;
}
//------------------------------------------------------------------------------
const char* vtkContourLoopExtraction::GetLoopClosureAsString()
{
if (this->LoopClosure == VTK_LOOP_CLOSURE_OFF)
{
return "LoopClosureOff";
}
else if (this->LoopClosure == VTK_LOOP_CLOSURE_BOUNDARY)
{
return "LoopClosureBoundary";
}
else
{
return "LoopClosureAll";
}
}
//------------------------------------------------------------------------------
const char* vtkContourLoopExtraction::GetOutputModeAsString()
{
if (this->OutputMode == VTK_OUTPUT_POLYGONS)
{
return "OutputModePolygons";
}
else if (this->OutputMode == VTK_OUTPUT_POLYLINES)
{
return "OutputModePolylines";
}
else
{
return "OutputModeBoth";
}
}
//------------------------------------------------------------------------------
void vtkContourLoopExtraction::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Loop Closure: ";
os << this->GetLoopClosureAsString() << "\n";
os << indent << "Scalar Thresholding: " << (this->ScalarThresholding ? "On\n" : "Off\n");
double* range = this->GetScalarRange();
os << indent << "Scalar Range: (" << range[0] << ", " << range[1] << ")\n";
double* n = this->GetNormal();
os << indent << "Normal: (" << n[0] << ", " << n[1] << ", " << n[2] << ")\n";
os << indent << "Output Mode: ";
os << this->GetOutputModeAsString() << "\n";
os << indent << "Clean Points: " << (this->CleanPoints ? "On\n" : "Off\n");
}
VTK_ABI_NAMESPACE_END
|