File: vtkPConnectivityFilter.cxx

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 205,916 kB
  • sloc: cpp: 2,336,565; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 178; javascript: 165; objc: 153; tcl: 59
file content (892 lines) | stat: -rw-r--r-- 31,621 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause

#include "vtkPConnectivityFilter.h"

#include "vtkAOSDataArrayTemplate.h"
#include "vtkArrayDispatch.h"
#include "vtkBoundingBox.h"
#include "vtkCellData.h"
#include "vtkCellIterator.h"
#include "vtkDataSet.h"
#include "vtkDataSetSurfaceFilter.h"
#include "vtkIdTypeArray.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkKdTreePointLocator.h"
#include "vtkMPICommunicator.h"
#include "vtkMPIController.h"
#include "vtkMath.h"
#include "vtkMultiProcessController.h"
#include "vtkNew.h"
#include "vtkObjectFactory.h"
#include "vtkPointData.h"
#include "vtkThreshold.h"
#include "vtkTypeList.h"
#include "vtkUnsignedCharArray.h"
#include "vtkUnstructuredGrid.h"
#include "vtkWeakPointer.h"

#include <map>
#include <numeric>
#include <set>
#include <vector>

VTK_ABI_NAMESPACE_BEGIN
namespace
{

typedef vtkTypeList::Unique<
  vtkTypeList::Create<vtkAOSDataArrayTemplate<int>, vtkAOSDataArrayTemplate<unsigned long>,
    vtkAOSDataArrayTemplate<char>, vtkAOSDataArrayTemplate<unsigned char>,
    vtkAOSDataArrayTemplate<float>, vtkAOSDataArrayTemplate<double>>>::Result PointArrayTypes;

struct WorkerBase
{
  WorkerBase(vtkMPIController* subController)
    : SubController(subController)
  {
  }

  /**
   * MPI controller for ranks with data.
   */
  vtkWeakPointer<vtkMPIController> SubController;
};

/**
 * Worker for all ranks with data to exchange their bounding boxes.
 */
struct ExchangeBoundsWorker : public WorkerBase
{
  ExchangeBoundsWorker(vtkMPIController* subController)
    : WorkerBase(subController)
  {
    memset(this->Bounds, 0, sizeof(this->Bounds));
  }

  bool Execute(const double bounds[6], const vtkSmartPointer<vtkDataArray>& allBoundsArray)
  {
    memcpy(this->Bounds, bounds, 6 * sizeof(double));

    using Dispatcher = vtkArrayDispatch::DispatchByArray<PointArrayTypes>;
    return Dispatcher::Execute(allBoundsArray, *this);
  }

  template <class TArray>
  void operator()(TArray* allBounds)
  {
    // Inflate the bounds a bit to deal with floating point precision.
    double bounds[6];
    vtkBoundingBox myBoundingBox(this->Bounds);
    myBoundingBox.Inflate();
    myBoundingBox.GetBounds(bounds);

    typename TArray::ValueType typedBounds[6];
    for (int i = 0; i < 6; ++i)
    {
      typedBounds[i] = static_cast<typename TArray::ValueType>(bounds[i]);
    }

    allBounds->SetNumberOfComponents(6);
    allBounds->SetNumberOfTuples(this->SubController->GetNumberOfProcesses());
    this->SubController->AllGather(
      typedBounds, reinterpret_cast<typename TArray::ValueType*>(allBounds->GetVoidPointer(0)), 6);
  }

protected:
  // Input - Local data bounds
  double Bounds[6];
};

/**
 * Determine this rank's neighbors from the bounding box information.
 */
struct FindMyNeighborsWorker : public WorkerBase
{
  FindMyNeighborsWorker(vtkMPIController* subController)
    : WorkerBase(subController)
    , MyNeighbors(nullptr)
  {
    memset(this->Bounds, 0, sizeof(this->Bounds));
  }

  bool Execute(const double bounds[6], const vtkSmartPointer<vtkDataArray>& allBoundsArray,
    std::vector<int>& myNeighbors)
  {
    memcpy(this->Bounds, bounds, 6 * sizeof(double));
    this->AllBoundsArray = allBoundsArray;

    // Output
    this->MyNeighbors = &myNeighbors;

    this->DoExecute();
    return true;
  }

  void DoExecute()
  {
    this->MyNeighbors->clear();

    vtkBoundingBox myBoundingBox(this->Bounds);
    myBoundingBox.Inflate();
    double bounds[6];
    myBoundingBox.GetBounds(bounds);

    // Identify neighboring ranks.
    int myRank = this->SubController->GetLocalProcessId();
    for (int p = 0; p < this->SubController->GetNumberOfProcesses(); ++p)
    {
      if (p == myRank)
      {
        continue;
      }

      double potentialNeighborBounds[6];
      this->AllBoundsArray->GetTuple(p, potentialNeighborBounds);

      vtkBoundingBox potentialNeighborBoundingBox(potentialNeighborBounds);
      if (myBoundingBox.Intersects(potentialNeighborBoundingBox))
      {
        this->MyNeighbors->push_back(p);
      }
    }
  }

protected:
  // Input - Local data bounds
  double Bounds[6];

  // Input - Bounds on all ranks
  vtkWeakPointer<vtkDataArray> AllBoundsArray;

  // Output - List of this rank's neighbors.
  std::vector<int>* MyNeighbors;
};

/**
 * Worker to gather up points and region ids to send to neighbors.
 */
struct AssemblePointsAndRegionIdsWorker : public WorkerBase
{
  AssemblePointsAndRegionIdsWorker(vtkMPIController* subController)
    : WorkerBase(subController)
    , RegionStarts(nullptr)
    , PointsForMyNeighbors(nullptr)
    , RegionIdsForMyNeighbors(nullptr)
  {
  }

  bool Execute(const std::vector<int>& regionStarts,
    const vtkSmartPointer<vtkDataArray>& allBoundsArray,
    const vtkSmartPointer<vtkPointSet>& localResult,
    std::map<int, vtkSmartPointer<vtkDataArray>>& pointsForMyNeighbors,
    std::map<int, vtkSmartPointer<vtkIdTypeArray>>& regionIdsForMyNeighbors)
  {
    this->RegionStarts = &regionStarts;
    this->LocalResult = localResult;

    // Output
    this->PointsForMyNeighbors = &pointsForMyNeighbors;
    this->RegionIdsForMyNeighbors = &regionIdsForMyNeighbors;

    using Dispatcher = vtkArrayDispatch::DispatchByArray<PointArrayTypes>;
    return Dispatcher::Execute(allBoundsArray, *this);
  }

  template <class TArray>
  void operator()(TArray* allBounds)
  {
    // For all neighbors, gather up points and region IDs that they will
    // potentially need. These are local points that fall within the bounding
    // box of the neighbors.
    this->PointsForMyNeighbors->clear();
    this->RegionIdsForMyNeighbors->clear();

    int myRank = this->SubController->GetLocalProcessId();
    vtkPoints* outputPoints = this->LocalResult->GetPoints();
    TArray* pointArray = TArray::SafeDownCast(outputPoints->GetData());
    vtkPointData* outputPD = this->LocalResult->GetPointData();
    vtkIdTypeArray* pointRegionIds = vtkIdTypeArray::SafeDownCast(outputPD->GetArray("RegionId"));
    for (int p = 0; p < this->SubController->GetNumberOfProcesses(); ++p)
    {
      if (myRank == p)
      {
        continue;
      }

      TArray* typedPointsForMyNeighbor = TArray::New();
      typedPointsForMyNeighbor->SetNumberOfComponents(3);
      (*this->PointsForMyNeighbors)[p].TakeReference(typedPointsForMyNeighbor);
      (*this->RegionIdsForMyNeighbors)[p] = vtkSmartPointer<vtkIdTypeArray>::New();

      typename TArray::ValueType bb[6];
      allBounds->GetTypedTuple(p, bb);

      vtkBoundingBox neighborBB(bb[0], bb[1], bb[2], bb[3], bb[4], bb[5]);
      for (vtkIdType id = 0; id < this->LocalResult->GetNumberOfPoints(); ++id)
      {
        typename TArray::ValueType pt[3];
        pointArray->GetTypedTuple(id, pt);
        double doublePt[3] = { static_cast<double>(pt[0]), static_cast<double>(pt[1]),
          static_cast<double>(pt[2]) };

        if (neighborBB.ContainsPoint(doublePt))
        {
          typedPointsForMyNeighbor->InsertNextTypedTuple(pt);

          vtkIdType regionId =
            pointRegionIds->GetTypedComponent(id, 0) + (*this->RegionStarts)[myRank];
          (*this->RegionIdsForMyNeighbors)[p]->InsertNextTypedTuple(&regionId);
        }
      }
    }
  }

protected:
  // Input - Starting index of the first region on each rank.
  const std::vector<int>* RegionStarts;

  // Input - Output from the local connectivity operation.
  vtkWeakPointer<vtkPointSet> LocalResult;

  // Output
  std::map<int, vtkSmartPointer<vtkDataArray>>* PointsForMyNeighbors;

  // Output
  std::map<int, vtkSmartPointer<vtkIdTypeArray>>* RegionIdsForMyNeighbors;
};

/**
 * Send and receive points to/from neighbors.
 */
struct SendReceivePointsWorker : public WorkerBase
{

  SendReceivePointsWorker(vtkMPIController* subController)
    : WorkerBase(subController)
    , PointsFromMyNeighbors(nullptr)
    , RegionIdsFromMyNeighbors(nullptr)
  {
  }

  bool Execute(const vtkSmartPointer<vtkDataArray>& allBoundsArray,
    const std::map<int, int>& sendLengths, const std::map<int, int>& recvLengths,
    const std::map<int, vtkSmartPointer<vtkDataArray>>& pointsForMyNeighbors,
    const std::map<int, vtkSmartPointer<vtkIdTypeArray>>& regionIdsForMyNeighbors,
    std::map<int, vtkSmartPointer<vtkDataArray>>& pointsFromMyNeighbors,
    std::map<int, vtkSmartPointer<vtkIdTypeArray>>& regionIdsFromMyNeighbors)
  {
    this->SendLengths = sendLengths;
    this->RecvLengths = recvLengths;
    this->PointsForMyNeighbors = pointsForMyNeighbors;
    this->RegionIdsForMyNeighbors = regionIdsForMyNeighbors;

    // Output
    this->PointsFromMyNeighbors = &pointsFromMyNeighbors;
    this->RegionIdsFromMyNeighbors = &regionIdsFromMyNeighbors;

    using Dispatcher = vtkArrayDispatch::DispatchByArray<PointArrayTypes>;
    return Dispatcher::Execute(allBoundsArray, *this);
  }

  template <class TArray>
  void operator()(TArray* vtkNotUsed(array))
  {
    const int PCF_POINTS_TAG = 194728;
    const int PCF_REGIONIDS_TAG = 194729;
    this->PointsFromMyNeighbors->clear();
    this->RegionIdsFromMyNeighbors->clear();

    std::map<int, vtkMPICommunicator::Request> sendRequestsPoints;
    std::map<int, vtkMPICommunicator::Request> sendRequestsRegionIds;
    std::vector<vtkMPICommunicator::Request> recvRequestsPoints(this->RecvLengths.size());
    std::vector<vtkMPICommunicator::Request> recvRequestsRegionIds(this->RecvLengths.size());

    // Receive neighbors' points.
    int requestIdx = 0;
    for (auto iter = this->RecvLengths.begin(); iter != this->RecvLengths.end(); ++iter)
    {
      int fromRank = iter->first;
      int numFromRank = iter->second;
      if (numFromRank > 0)
      {
        TArray* pfmn = TArray::New();
        pfmn->SetNumberOfComponents(3);
        pfmn->SetNumberOfTuples(numFromRank);
        (*this->PointsFromMyNeighbors)[fromRank].TakeReference(pfmn);
        this->SubController->NoBlockReceive(pfmn->GetPointer(0), 3 * numFromRank, fromRank,
          PCF_POINTS_TAG, recvRequestsPoints[requestIdx]);

        vtkIdTypeArray* idArray = vtkIdTypeArray::New();
        idArray->SetNumberOfComponents(1);
        idArray->SetNumberOfTuples(numFromRank);
        (*this->RegionIdsFromMyNeighbors)[fromRank].TakeReference(idArray);
        this->SubController->NoBlockReceive(idArray->GetPointer(0), numFromRank, fromRank,
          PCF_REGIONIDS_TAG, recvRequestsRegionIds[requestIdx++]);
      }
    }

    // Send points to neighbors
    for (auto nbrIter = this->SendLengths.begin(); nbrIter != this->SendLengths.end(); ++nbrIter)
    {
      vtkIdType toRank = nbrIter->first;
      vtkIdType numToRank = nbrIter->second;
      if (numToRank > 0)
      {
        TArray* pfmn = TArray::SafeDownCast(this->PointsForMyNeighbors.at(toRank));
        this->SubController->NoBlockSend(
          pfmn->GetPointer(0), 3 * numToRank, toRank, PCF_POINTS_TAG, sendRequestsPoints[toRank]);

        vtkIdTypeArray* idArray = this->RegionIdsForMyNeighbors.at(toRank);
        this->SubController->NoBlockSend(idArray->GetPointer(0), numToRank, toRank,
          PCF_REGIONIDS_TAG, sendRequestsRegionIds[toRank]);
      }
    }

    this->SubController->WaitAll(requestIdx, recvRequestsPoints.data());
    this->SubController->WaitAll(requestIdx, recvRequestsRegionIds.data());
  }

protected:
  // Input
  std::map<int, int> SendLengths;
  std::map<int, int> RecvLengths;
  std::map<int, vtkSmartPointer<vtkDataArray>> PointsForMyNeighbors;
  std::map<int, vtkSmartPointer<vtkIdTypeArray>> RegionIdsForMyNeighbors;

  // Output
  std::map<int, vtkSmartPointer<vtkDataArray>>* PointsFromMyNeighbors;
  std::map<int, vtkSmartPointer<vtkIdTypeArray>>* RegionIdsFromMyNeighbors;
};

/**
 * Exchange number of points going to each neighbor. No dispatch is needed for this function.
 */
void ExchangeNumberOfPointsToSend(vtkMPIController* subController,
  const std::vector<int>& myNeighbors,
  const std::map<int, vtkSmartPointer<vtkIdTypeArray>>& regionIdsForMyNeighbors,
  std::map<int, int>& sendLengths, std::map<int, int>& recvLengths)
{
  const int PCF_SIZE_EXCHANGE_TAG = 194727;
  recvLengths.clear();
  std::vector<vtkMPICommunicator::Request> recvRequests(myNeighbors.size());
  int requestIdx = 0;
  for (auto nbrIter = myNeighbors.begin(); nbrIter != myNeighbors.end(); ++nbrIter)
  {
    int fromRank = *nbrIter;
    subController->NoBlockReceive(
      &recvLengths[fromRank], 1, fromRank, PCF_SIZE_EXCHANGE_TAG, recvRequests[requestIdx++]);
  }
  std::map<int, vtkMPICommunicator::Request> sendRequests;
  // Send number of points neighbors should expect to receive.
  for (auto nbrIter = myNeighbors.begin(); nbrIter != myNeighbors.end(); ++nbrIter)
  {
    int toRank = *nbrIter;
    sendLengths[toRank] = static_cast<int>(regionIdsForMyNeighbors.at(toRank)->GetNumberOfValues());
    subController->NoBlockSend(
      &sendLengths[toRank], 1, toRank, PCF_SIZE_EXCHANGE_TAG, sendRequests[toRank]);
  }
  subController->WaitAll(requestIdx, recvRequests.data());
}

} // end anonymous namespace

vtkStandardNewMacro(vtkPConnectivityFilter);

vtkPConnectivityFilter::vtkPConnectivityFilter() = default;

vtkPConnectivityFilter::~vtkPConnectivityFilter() = default;

int vtkPConnectivityFilter::RequestData(
  vtkInformation* request, vtkInformationVector** inputVector, vtkInformationVector* outputVector)
{
  // Get the input
  vtkInformation* inInfo = inputVector[0]->GetInformationObject(0);
  if (!inInfo)
  {
    return 0;
  }
  vtkDataSet* input = vtkDataSet::SafeDownCast(inInfo->Get(vtkDataObject::DATA_OBJECT()));

  vtkMultiProcessController* globalController = vtkMultiProcessController::GetGlobalController();

  // Check how many ranks have data. If it is only one, running the superclass
  // RequestData is sufficient as no global data exchange and RegionId
  // relabeling is needed. It is worth checking to avoid issuing an
  // unnecessary warning when a dataset resides entirely on one process.
  int numRanks = 1;
  int myRank = 0;
  int ranksWithCells = 0;
  int hasCells = input->GetNumberOfCells() > 0 ? 1 : 0;

  if (globalController)
  {
    globalController->AllReduce(&hasCells, &ranksWithCells, 1, vtkCommunicator::SUM_OP);
    numRanks = globalController->GetNumberOfProcesses();
    myRank = globalController->GetLocalProcessId();
  }

  // Compute local connectivity. If we are running in parallel, we need the full
  // connectivity first, and will handle the extraction mode later.
  int success = 1;
  if (numRanks > 1 && ranksWithCells > 1)
  {
    if (this->ExtractionMode == VTK_EXTRACT_POINT_SEEDED_REGIONS ||
      this->ExtractionMode == VTK_EXTRACT_CELL_SEEDED_REGIONS ||
      this->ExtractionMode == VTK_EXTRACT_SPECIFIED_REGIONS)
    {
      vtkErrorMacro("ExtractionMode " << this->GetExtractionModeAsString()
                                      << " is not supported in " << this->GetClassName()
                                      << " when the number of ranks with data is greater than 1.");
      return 1;
    }

    int saveScalarConnectivity = this->ScalarConnectivity;
    int saveExtractionMode = this->ExtractionMode;
    int saveColorRegions = this->ColorRegions;
    int saveRegionIdAssignmentMode = this->RegionIdAssignmentMode;
    bool compressArrays = this->GetCompressArrays();

    // Overwrite custom member variables temporarily.
    this->ScalarConnectivity = 0;
    this->ExtractionMode = VTK_EXTRACT_ALL_REGIONS;
    this->ColorRegions = 1;
    this->RegionIdAssignmentMode = UNSPECIFIED;
    this->CompressArraysOff();

    // Invoke the connectivity algorithm in the superclass.
    success = this->Superclass::RequestData(request, inputVector, outputVector);

    this->ScalarConnectivity = saveScalarConnectivity;
    this->ExtractionMode = saveExtractionMode;
    this->ColorRegions = saveColorRegions;
    this->RegionIdAssignmentMode = saveRegionIdAssignmentMode;
    this->SetCompressArrays(compressArrays);
  }
  else
  {
    // Only 1 process, just invoke the superclass and return.
    return this->Superclass::RequestData(request, inputVector, outputVector);
  }

  // Create a SubController.
  vtkSmartPointer<vtkMPIController> subController;
  subController.TakeReference(
    vtkMPIController::SafeDownCast(globalController)->PartitionController(hasCells, 0));

  // From here on we deal only with the SubController
  numRanks = subController->GetNumberOfProcesses();
  myRank = subController->GetLocalProcessId();

  // Get the info objects
  vtkInformation* outInfo = outputVector->GetInformationObject(0);

  // Get the output
  vtkPointSet* output = vtkPointSet::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));
  if (!output->GetPoints())
  {
    vtkErrorMacro("No points in data set");
    success = 0;
  }

  // Check that all ranks succeeded in local connectivity.
  int globalSuccess = 0;
  subController->AllReduce(&success, &globalSuccess, 1, vtkCommunicator::MIN_OP);

  if (!globalSuccess)
  {
    vtkErrorMacro("An error occurred on at least one process.");
    return 0;
  }

  // Exchange number of regions. We assume the RegionIDs are contiguous.
  int numRegions = this->GetNumberOfExtractedRegions();
  std::vector<int> regionCounts(numRanks, 0);
  std::vector<int> regionStarts(numRanks + 1, 0);
  subController->AllGather(&numRegions, regionCounts.data(), 1);

  // Compute starting region Ids on each rank
  std::partial_sum(regionCounts.begin(), regionCounts.end(), regionStarts.begin() + 1);

  vtkPointData* outputPD = output->GetPointData();
  vtkIdTypeArray* pointRegionIds = vtkIdTypeArray::SafeDownCast(outputPD->GetArray("RegionId"));

  // Exchange bounding boxes of the data on each rank. These are used to
  // determine neighboring ranks and to minimize the number of points sent
  // to neighboring processors.
  vtkSmartPointer<vtkDataArray> allBoundsArray;
  allBoundsArray.TakeReference(output->GetPoints()->GetData()->NewInstance());

  ExchangeBoundsWorker exchangeBounds(subController);
  if (!exchangeBounds.Execute(output->GetBounds(), allBoundsArray))
  {
    vtkErrorMacro("Unsupported points array type encountered when exchanging bounds.");
    return 0;
  }

  // Identify neighboring ranks.
  FindMyNeighborsWorker findMyNeighbors(subController);
  std::vector<int> myNeighbors;
  if (!findMyNeighbors.Execute(output->GetBounds(), allBoundsArray, myNeighbors))
  {
    vtkErrorMacro("Unsupported points array type encountered when finding neighbors.");
    return 0;
  }

  AssemblePointsAndRegionIdsWorker assemblePointsAndRegionIds(subController);
  std::map<int, vtkSmartPointer<vtkDataArray>> pointsForMyNeighbors;
  std::map<int, vtkSmartPointer<vtkIdTypeArray>> regionIdsForMyNeighbors;
  if (!assemblePointsAndRegionIds.Execute(
        regionStarts, allBoundsArray, output, pointsForMyNeighbors, regionIdsForMyNeighbors))
  {
    vtkErrorMacro(
      "Unsupported points array type encountered when assembling points and region ids.");
    return 0;
  }

  std::map<int, int> sendLengths;
  std::map<int, int> recvLengths;
  ExchangeNumberOfPointsToSend(
    subController, myNeighbors, regionIdsForMyNeighbors, sendLengths, recvLengths);

  SendReceivePointsWorker sendReceivePoints(subController);
  std::map<int, vtkSmartPointer<vtkDataArray>> pointsFromMyNeighbors;
  std::map<int, vtkSmartPointer<vtkIdTypeArray>> regionIdsFromMyNeighbors;
  if (!sendReceivePoints.Execute(allBoundsArray, sendLengths, recvLengths, pointsForMyNeighbors,
        regionIdsForMyNeighbors, pointsFromMyNeighbors, regionIdsFromMyNeighbors))
  {
    vtkErrorMacro("Unsupported points array type encountered when sending and receiving points.");
    return 0;
  }

  //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  //++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  // Links from local region ids to remote region ids. Vector index is local
  // region id, and the set contains linked remote ids.
  typedef std::vector<std::set<vtkIdType>> RegionLinksType;
  RegionLinksType links(regionStarts[numRanks]);

  if (output->GetNumberOfPoints() > 0)
  {
    // Now resolve the points from our neighbors to local points if possible.
    vtkNew<vtkKdTreePointLocator> localPointLocator;
    localPointLocator->SetDataSet(output);
    localPointLocator->BuildLocator();

    // Map the local and remote ids
    for (int rank = 0; rank < numRanks; ++rank)
    {
      if (rank == myRank || pointsFromMyNeighbors.count(rank) == 0)
      {
        continue;
      }

      for (vtkIdType ptId = 0; ptId < pointsFromMyNeighbors[rank]->GetNumberOfTuples(); ++ptId)
      {
        double x[3];
        pointsFromMyNeighbors[rank]->GetTuple(ptId, x);

        vtkIdType localId = localPointLocator->FindClosestPoint(x);
        // Skip local ghost points as we do not need ghost-ghost links.
        vtkUnsignedCharArray* pointGhostArray = output->GetPointGhostArray();
        if (pointGhostArray &&
          pointGhostArray->GetTypedComponent(localId, 0) & vtkDataSetAttributes::DUPLICATEPOINT)
        {
          continue;
        }
        double y[3];
        output->GetPoints()->GetPoint(localId, y);
        double dist2 = vtkMath::Distance2BetweenPoints(x, y);
        if (dist2 > 1e-6)
        {
          // Nearest point is too far away, move on.
          continue;
        }

        // Save association between local and remote ids
        vtkIdTypeArray* localRegionIds =
          vtkIdTypeArray::SafeDownCast(outputPD->GetArray("RegionId"));
        vtkIdType localRegionId =
          localRegionIds->GetTypedComponent(localId, 0) + regionStarts[myRank];

        vtkIdType remoteRegionId = regionIdsFromMyNeighbors[rank]->GetTypedComponent(ptId, 0);

        if (links[localRegionId].count(remoteRegionId) == 0)
        {
          // Link not already established. Add it here.
          links[localRegionId].insert(remoteRegionId);
        }
      }
    }
  }

  // Set up storage for gathering all links from all processors. This is an
  // interleaved vector containing one regionId and its connected regionId.
  std::vector<vtkIdType> localLinks;
  for (size_t i = 0; i < links.size(); ++i)
  {
    for (std::set<vtkIdType>::iterator iter = std::begin(links[i]); iter != std::end(links[i]);
         ++iter)
    {
      localLinks.push_back(static_cast<vtkIdType>(i));
      localLinks.push_back(*iter);
    }
  }

  // Gather all the links on each rank. This is possibly suboptimal, but it
  // avoids needing a connected components algorithm on a distributed graph.
  vtkIdType localNumLinks = static_cast<vtkIdType>(localLinks.size());
  std::vector<vtkIdType> linkCounts(numRanks, -1);
  std::vector<vtkIdType> linkStarts(numRanks + 1, 0);
  subController->AllGather(&localNumLinks, linkCounts.data(), 1);

  // Compute starting region IDs on each rank
  for (int i = 0; i < numRanks; ++i)
  {
    linkStarts[i + 1] = linkCounts[i] + linkStarts[i];
  }

  std::vector<vtkIdType> allLinks(linkStarts[numRanks]);

  subController->AllGatherV(localLinks.data(), allLinks.data(),
    static_cast<vtkIdType>(localLinks.size()), linkCounts.data(), linkStarts.data());

  // Set up a graph of all the region-to-region links.
  typedef struct _RegionNode
  {
    // Stored for relabeling step
    vtkIdType OriginalRegionId;

    // Current local region id
    vtkIdType CurrentRegionId;

    std::vector<vtkIdType> Links;
  } RegionNode;

  size_t linkIdx = 0;
  std::vector<RegionNode> regionNodes(regionStarts[numRanks]);
  for (vtkIdType regionId = 0; regionId < regionStarts[numRanks]; ++regionId)
  {
    regionNodes[regionId].OriginalRegionId = regionId;
    regionNodes[regionId].CurrentRegionId = regionId;

    while (linkIdx < allLinks.size() && allLinks[linkIdx] == regionId)
    {
      regionNodes[regionId].Links.push_back(allLinks[linkIdx + 1]);
      linkIdx += 2;
    }
  }

  // Now run connected components on this graph. The algorithm labels all
  // connected nodes in the graph with the lowest region id in the connected
  // component. This is a breadth-first algorithm. I'm not 100% sure that the
  // multiple passes in the do-while loop are required, but I suspect there may
  // be graph configurations where a single pass is not sufficient for the
  // relabeling to converge.
  bool componentChanged = false;
  do
  {
    componentChanged = false;
    for (std::vector<RegionNode>::iterator nodeIter = regionNodes.begin();
         nodeIter != regionNodes.end(); ++nodeIter)
    {
      for (std::vector<vtkIdType>::iterator linkIter = nodeIter->Links.begin();
           linkIter != nodeIter->Links.end(); ++linkIter)
      {
        vtkIdType linkedRegionId = *linkIter;
        if (nodeIter->CurrentRegionId < regionNodes[linkedRegionId].CurrentRegionId)
        {
          regionNodes[linkedRegionId].CurrentRegionId = nodeIter->CurrentRegionId;
          componentChanged = true;
        }
      }
    }
  } while (componentChanged);

  // Collect all the current ids remaining after the connected components
  // algorithm.
  std::set<vtkIdType> currentRegionIds;
  for (std::vector<RegionNode>::iterator nodeIter = regionNodes.begin();
       nodeIter != regionNodes.end(); ++nodeIter)
  {
    currentRegionIds.insert(nodeIter->CurrentRegionId);
  }

  // Create a map from current region id after relabeling to a new, contiguous
  // label. Maps current region id -> relabeled array.
  std::map<vtkIdType, vtkIdType> relabeledRegionMap;
  vtkIdType contiguousLabel = 0;
  for (std::set<vtkIdType>::iterator setIter = currentRegionIds.begin();
       setIter != currentRegionIds.end(); ++setIter)
  {
    relabeledRegionMap[*setIter] = contiguousLabel++;
  }

  // Now do the relabing to the contiguous region id.
  std::vector<vtkIdType> regionIdMap(regionNodes.size(), -1);
  for (std::vector<RegionNode>::iterator nodeIter = regionNodes.begin();
       nodeIter != regionNodes.end(); ++nodeIter)
  {
    nodeIter->CurrentRegionId = relabeledRegionMap[nodeIter->CurrentRegionId];
  }

  // Relabel the points and cells according to the contiguous renumbering.
  vtkCellData* outputCD = output->GetCellData();
  vtkIdTypeArray* cellRegionIds = vtkIdTypeArray::SafeDownCast(outputCD->GetArray("RegionId"));
  for (vtkIdType i = 0; i < output->GetNumberOfCells(); ++i)
  {
    // Offset the cellRegionId by the starting region id on this rank.
    vtkIdType cellRegionId = cellRegionIds->GetValue(i) + regionStarts[myRank];
    cellRegionIds->SetValue(i, regionNodes[cellRegionId].CurrentRegionId);
  }

  for (vtkIdType i = 0; i < output->GetNumberOfPoints(); ++i)
  {
    // Offset the pointRegionId by the starting region id on this rank.
    vtkIdType pointRegionId = pointRegionIds->GetValue(i) + regionStarts[myRank];
    pointRegionIds->SetValue(i, regionNodes[pointRegionId].CurrentRegionId);
  }

  // Sum up number of cells in each region.
  vtkIdType numContiguousLabels = contiguousLabel;
  std::vector<vtkIdType> localRegionSizes(numContiguousLabels, 0);
  if (cellRegionIds)
  {
    // Iterate over cells and count how many are in different regions. Count only non-ghost cells.
    vtkUnsignedCharArray* cellGhostArray = output->GetCellGhostArray();
    for (vtkIdType i = 0; i < cellRegionIds->GetNumberOfValues(); ++i)
    {
      if (cellGhostArray &&
        cellGhostArray->GetTypedComponent(i, 0) & vtkDataSetAttributes::DUPLICATECELL)
      {
        continue;
      }
      localRegionSizes[cellRegionIds->GetValue(i)]++;
    }
  }

  // AllReduce to sum up the number of cells in each region on each process.
  std::vector<vtkIdType> globalRegionSizes(numContiguousLabels, 0);
  subController->AllReduce(localRegionSizes.data(), globalRegionSizes.data(), numContiguousLabels,
    vtkCommunicator::SUM_OP);

  // Store the region sizes
  this->RegionSizes->Reset();
  this->RegionSizes->SetNumberOfComponents(1);
  this->RegionSizes->SetNumberOfTuples(numContiguousLabels);
  for (vtkIdType i = 0; i < numContiguousLabels; ++i)
  {
    this->RegionSizes->SetTypedTuple(i, &globalRegionSizes[i]);
  }

  // Potentially reorder RegionIds in the output arrays.
  this->OrderRegionIds(pointRegionIds, cellRegionIds);

  if (this->ExtractionMode == VTK_EXTRACT_LARGEST_REGION ||
    this->ExtractionMode == VTK_EXTRACT_CLOSEST_POINT_REGION)
  {
    double threshold = 0.0;
    if (this->ExtractionMode == VTK_EXTRACT_LARGEST_REGION)
    {
      vtkIdType largestRegionCount = 0;
      vtkIdType largestRegionId = 0;
      for (vtkIdType i = 0; i < this->RegionSizes->GetNumberOfTuples(); ++i)
      {
        vtkIdType candidateCount = this->RegionSizes->GetValue(i);
        if (candidateCount > largestRegionCount)
        {
          largestRegionCount = candidateCount;
          largestRegionId = i;
        }
      }
      threshold = largestRegionId;
    }
    else if (this->ExtractionMode == VTK_EXTRACT_CLOSEST_POINT_REGION)
    {
      // Find point closest to the desired point
      double minDist2 = VTK_DOUBLE_MAX;
      vtkIdType minId = 0;
      for (vtkIdType i = 0; i < output->GetNumberOfPoints(); ++i)
      {
        double x[3];
        output->GetPoint(i, x);
        double dist2 = vtkMath::Distance2BetweenPoints(x, this->ClosestPoint);
        if (dist2 < minDist2)
        {
          minDist2 = dist2;
          minId = i;
        }
      }

      // AllReduce to find the global minDist2.
      double globalMinDist2 = VTK_DOUBLE_MAX;
      subController->AllReduce(&minDist2, &globalMinDist2, 1, vtkCommunicator::MIN_OP);

      int minDist2Rank = 0;
      vtkIdType minDist2Region = 0;
      if (fabs(minDist2 - globalMinDist2) < 1e-9)
      {
        minDist2Rank = myRank;
        minDist2Region = pointRegionIds->GetValue(minId);
      }

      // Broadcast the rank of who has the minimum distance
      int globalMinDist2Rank = 0;
      subController->AllReduce(&minDist2Rank, &globalMinDist2Rank, 1, vtkCommunicator::MAX_OP);

      // Get the id of the region nearest the point and use that in the
      // threshold filter below.
      subController->Broadcast(&minDist2Region, 1, globalMinDist2Rank);
      threshold = minDist2Region;
    }

    // Now extract only the cells that have the desired id.
    vtkNew<vtkThreshold> thresholder;
    thresholder->SetInputData(output);
    thresholder->SetThresholdFunction(vtkThreshold::THRESHOLD_BETWEEN);
    thresholder->SetLowerThreshold(threshold);
    thresholder->SetUpperThreshold(threshold);
    thresholder->SetInputArrayToProcess(
      0, 0, 0, vtkDataObject::FIELD_ASSOCIATION_CELLS, "RegionId");
    thresholder->Update();

    if (output->IsA("vtkPolyData"))
    {
      // It's too bad we have to do this, but vtkThreshold produces
      // vtkUnstructuredGrid output.
      vtkNew<vtkDataSetSurfaceFilter> surfaceFilter;
      surfaceFilter->SetInputConnection(thresholder->GetOutputPort());
      surfaceFilter->PassThroughCellIdsOff();
      surfaceFilter->PassThroughPointIdsOff();
      surfaceFilter->Update();
      output->ShallowCopy(surfaceFilter->GetOutput());
    }
    else
    {
      // Output is an unstructured grid
      output->DeepCopy(thresholder->GetOutput());
    }
  }

  if (!this->ColorRegions)
  {
    // No coloring desired. Remove the RegionId arrays.
    outputPD->RemoveArray("RegionId");
    outputCD->RemoveArray("RegionId");
  }
  else
  {
    this->AddRegionsIds(output, pointRegionIds, cellRegionIds);
  }

  return 1;
}

void vtkPConnectivityFilter::PrintSelf(ostream& os, vtkIndent indent)
{
  this->Superclass::PrintSelf(os, indent);
}
VTK_ABI_NAMESPACE_END