File: vtkPointSource.h

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 205,916 kB
  • sloc: cpp: 2,336,565; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 178; javascript: 165; objc: 153; tcl: 59
file content (148 lines) | stat: -rw-r--r-- 4,545 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
/**
 * @class   vtkPointSource
 * @brief   create a random cloud of points
 *
 * vtkPointSource is a source object that creates a user-specified number of
 * points within a specified radius about a specified center point.  By
 * default the location of the points is random within the sphere. It is also
 * possible to generate random points only on the surface of the sphere; or a
 * exponential distribution weighted towards the center point. The output
 * PolyData has the specified number of points and a single cell - a
 * vtkPolyVertex cell referencing all of the points.
 *
 * @note
 * If Lambda set to zero, a uniform distribution is used. Negative lambda
 * values are allowed, but the distribution function becomes inverted.
 *
 * @note
 * If you desire to create complex point clouds (e.g., stellar distributions)
 * then use multiple point sources and then append them together using the
 * an append filter (e.g., vtkAppendPolyData).
 *
 * @sa
 * vtkAppendPolyData
 */

#ifndef vtkPointSource_h
#define vtkPointSource_h

#include "vtkFiltersSourcesModule.h" // For export macro
#include "vtkPolyDataAlgorithm.h"

#define VTK_POINT_SHELL 0
#define VTK_POINT_UNIFORM 1
#define VTK_POINT_EXPONENTIAL 2

VTK_ABI_NAMESPACE_BEGIN
class vtkRandomSequence;

class VTKFILTERSSOURCES_EXPORT vtkPointSource : public vtkPolyDataAlgorithm
{
public:
  ///@{
  /**
   * Standard methods for instantiation, type information, and printing.
   */
  static vtkPointSource* New();
  vtkTypeMacro(vtkPointSource, vtkPolyDataAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent) override;
  ///@}

  ///@{
  /**
   * Set the number of points to generate.
   */
  vtkSetClampMacro(NumberOfPoints, vtkIdType, 1, VTK_ID_MAX);
  vtkGetMacro(NumberOfPoints, vtkIdType);
  ///@}

  ///@{
  /**
   * Set the center of the point cloud.
   */
  vtkSetVector3Macro(Center, double);
  vtkGetVectorMacro(Center, double, 3);
  ///@}

  ///@{
  /**
   * Set the radius of the point cloud.  If you are
   * generating a Gaussian distribution, then this is
   * the standard deviation for each of x, y, and z.
   */
  vtkSetClampMacro(Radius, double, 0.0, VTK_DOUBLE_MAX);
  vtkGetMacro(Radius, double);
  ///@}

  ///@{
  /**
   * Specify the point distribution to use.  The default is a uniform
   * distribution.  The shell distribution produces random points on the
   * surface of the sphere Radius=constant, no points in the interior.  The
   * exponential distribution creates more points towards the center point
   * weighted by the exponential function.
   */
  vtkSetClampMacro(Distribution, int, VTK_POINT_SHELL, VTK_POINT_EXPONENTIAL);
  void SetDistributionToShell() { this->SetDistribution(VTK_POINT_SHELL); }
  void SetDistributionToUniform() { this->SetDistribution(VTK_POINT_UNIFORM); }
  void SetDistributionToExponential() { this->SetDistribution(VTK_POINT_EXPONENTIAL); }
  vtkGetMacro(Distribution, int);
  ///@}

  ///@{
  /**
   * If the distribution is set to exponential, then Lambda is used to
   * scale the exponential distribution defined by
   * f(x) = Lambda*exp(-Lambda*radius) where the radius is the distance
   * from the Center of the point source. By default, the value of Lambda
   * is Lambda=1.0.
   */
  vtkSetMacro(Lambda, double);
  vtkGetMacro(Lambda, double);
  ///@}

  ///@{
  /**
   * Set/get the desired precision for the output points.
   * vtkAlgorithm::SINGLE_PRECISION - Output single-precision floating point.
   * vtkAlgorithm::DOUBLE_PRECISION - Output double-precision floating point.
   */
  vtkSetMacro(OutputPointsPrecision, int);
  vtkGetMacro(OutputPointsPrecision, int);
  ///@}

  ///@{
  /**
   * Set/Get a random sequence generator.
   * By default, the generator in vtkMath is used to maintain backwards
   * compatibility.
   */
  virtual void SetRandomSequence(vtkRandomSequence* randomSequence);
  vtkGetObjectMacro(RandomSequence, vtkRandomSequence);
  ///@}

protected:
  vtkPointSource(vtkIdType numPts = 10);
  ~vtkPointSource() override;

  int RequestData(vtkInformation*, vtkInformationVector**, vtkInformationVector*) override;

  double Random();

  vtkIdType NumberOfPoints;
  double Center[3];
  double Radius;
  int Distribution;
  double Lambda;
  int OutputPointsPrecision;
  vtkRandomSequence* RandomSequence;

private:
  vtkPointSource(const vtkPointSource&) = delete;
  void operator=(const vtkPointSource&) = delete;
};

VTK_ABI_NAMESPACE_END
#endif