1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause
#include "vtkUniformHyperTreeGridSource.h"
#include "vtkCellData.h"
#include "vtkDataObject.h"
#include "vtkDoubleArray.h"
#include "vtkInformation.h"
#include "vtkObjectFactory.h"
#include "vtkUniformHyperTreeGrid.h"
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkUniformHyperTreeGridSource);
//------------------------------------------------------------------------------
vtkUniformHyperTreeGridSource::vtkUniformHyperTreeGridSource() = default;
//------------------------------------------------------------------------------
vtkUniformHyperTreeGridSource::~vtkUniformHyperTreeGridSource() = default;
//------------------------------------------------------------------------------
void vtkUniformHyperTreeGridSource::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
}
//------------------------------------------------------------------------------
int vtkUniformHyperTreeGridSource::FillOutputPortInformation(int, vtkInformation* info)
{
info->Set(vtkDataObject::DATA_TYPE_NAME(), "vtkUniformHyperTreeGrid");
return 1;
}
//------------------------------------------------------------------------------
int vtkUniformHyperTreeGridSource::RequestData(
vtkInformation*, vtkInformationVector**, vtkInformationVector* outputVector)
{
// Retrieve the output
vtkDataObject* outputDO = vtkDataObject::GetData(outputVector, 0);
vtkUniformHyperTreeGrid* output = vtkUniformHyperTreeGrid::SafeDownCast(outputDO);
if (!output)
{
vtkErrorMacro("pre: output_not_uniformHyperTreeGrid: " << outputDO->GetClassName());
return 0;
}
output->Initialize();
vtkCellData* outData = output->GetCellData();
this->LevelBitsIndexCnt.clear();
this->LevelBitsIndexCnt.push_back(0);
// When using descriptor-based definition, initialize descriptor parsing
if (this->UseDescriptor)
{
// Calculate refined block size
this->BlockSize = this->BranchFactor;
for (unsigned int i = 1; i < this->Dimension; ++i)
{
this->BlockSize *= this->BranchFactor;
}
if (!this->DescriptorBits && !this->InitializeFromStringDescriptor())
{
return 0;
}
else if (this->DescriptorBits && !this->InitializeFromBitsDescriptor())
{
return 0;
}
} // if this->UseDescriptor
// Set straightforward grid parameters
output->SetTransposedRootIndexing(this->TransposedRootIndexing);
output->SetBranchFactor(this->BranchFactor);
// Set parameters that depend on dimension
switch (this->Dimension)
{
case 1:
{
// Set 1D grid size depending on orientation
unsigned int axis = this->Orientation;
unsigned int gs[] = { 1, 1, 1 };
unsigned n = this->Dimensions[axis];
gs[axis] = n;
output->SetDimensions(gs);
// Assign coordinates
switch (axis)
{
case 0:
output->SetGridScale(this->GridScale[axis], 0., 0.);
break;
case 1:
output->SetGridScale(0., this->GridScale[axis], 0.);
break;
case 2:
output->SetGridScale(0., 0., this->GridScale[axis]);
break;
} // switch (axis)
} // case 1
break;
case 2:
{
// Set grid size depending on orientation
unsigned int n[3];
memcpy(n, this->Dimensions, 3 * sizeof(unsigned int));
n[this->Orientation] = 1;
output->SetDimensions(n);
unsigned int axis1 = (this->Orientation + 1) % 3;
unsigned int axis2 = (this->Orientation + 2) % 3;
// Assign coordinates
switch (this->Orientation)
{
case 0:
output->SetGridScale(0., this->GridScale[axis1], this->GridScale[axis2]);
break;
case 1:
output->SetGridScale(this->GridScale[axis2], 0., this->GridScale[axis1]);
break;
case 2:
output->SetGridScale(this->GridScale[axis1], this->GridScale[axis2], 0.);
break;
} // switch (this->Orientation)
} // case 2
break;
case 3:
{
// Set grid size
output->SetDimensions(this->Dimensions);
output->SetGridScale(this->GridScale[0], this->GridScale[1], this->GridScale[2]);
break;
} // case 3
default:
vtkErrorMacro(<< "Unsupported dimension: " << this->Dimension << ".");
return 0;
} // switch (this->Dimension)
// Prepare array of doubles for depth values
vtkNew<vtkDoubleArray> depthArray;
depthArray->SetName("Depth");
depthArray->SetNumberOfComponents(1);
outData->SetScalars(depthArray);
if (this->GenerateInterfaceFields)
{
// Prepare arrays of triples for interface surrogates
vtkNew<vtkDoubleArray> normalsArray;
normalsArray->SetName("Normals");
normalsArray->SetNumberOfComponents(3);
outData->SetVectors(normalsArray);
vtkNew<vtkDoubleArray> interceptsArray;
interceptsArray->SetName("Intercepts");
interceptsArray->SetNumberOfComponents(3);
outData->AddArray(interceptsArray);
}
if (!this->UseDescriptor)
{
// Prepare array of doubles for quadric values
vtkNew<vtkDoubleArray> quadricArray;
quadricArray->SetName("Quadric");
quadricArray->SetNumberOfComponents(1);
outData->AddArray(quadricArray);
}
// Iterate over constituting hypertrees
if (!this->ProcessTrees(nullptr, outputDO))
{
return 0;
}
// Squeeze output data arrays
for (int a = 0; a < outData->GetNumberOfArrays(); ++a)
{
outData->GetArray(a)->Squeeze();
}
this->LevelBitsIndexCnt.clear();
this->LevelBitsIndex.clear();
return 1;
}
VTK_ABI_NAMESPACE_END
|