File: vtkConduitToDataObject.cxx

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 205,916 kB
  • sloc: cpp: 2,336,565; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 178; javascript: 165; objc: 153; tcl: 59
file content (1222 lines) | stat: -rw-r--r-- 42,099 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause

// Added due to deprecated vtkConduitArrayUtilities::MCGhostArrayToVTKGhostArray
#define VTK_DEPRECATION_LEVEL 0

#include "vtkConduitToDataObject.h"

#include "vtkAMRBox.h"
#include "vtkArrayDispatch.h"
#include "vtkCellArrayIterator.h"
#include "vtkConduitArrayUtilities.h"
#if VTK_MODULE_ENABLE_VTK_AcceleratorsVTKmDataModel
#include "vtkConduitArrayUtilitiesDevice.h"
#endif
#include "vtkDataArray.h"
#include "vtkDataSet.h"
#include "vtkDataSetAttributes.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkLogger.h"
#include "vtkMultiProcessController.h"
#include "vtkOverlappingAMR.h"
#include "vtkParallelAMRUtilities.h"
#include "vtkPartitionedDataSet.h"
#include "vtkRectilinearGrid.h"
#include "vtkSMPTools.h"
#include "vtkStringArray.h"
#include "vtkStructuredGrid.h"
#include "vtkUniformGrid.h"
#include "vtkUnstructuredGrid.h"

#include "vtksys/SystemTools.hxx"

#include <catalyst_conduit.hpp>
#include <catalyst_conduit_blueprint.hpp>

#include <numeric>
#include <set>

namespace AMRUtils
{
struct LocalInfo
{
  int Rank = 0;
  conduit_index_t NbOfLeaves = 0;
  std::vector<int> BlocksPerLevel = { 0 };
  std::vector<vtkIdType> BlockOffsets;
  vtkIdType NbOfBlocks = 0;
  double Origin[3] = { vtkMath::Inf(), vtkMath::Inf(), vtkMath::Inf() };
  std::map<int, std::pair<int, int>> DomainBlockLevelIds;
};

struct GlobalInfo
{
  int NbOfProcesses = 1;
  vtkIdType NbOfBlocks = 0;
  std::vector<int> BlocksPerLevelAndRank;
  double Origin[3] = { vtkMath::Inf(), vtkMath::Inf(), vtkMath::Inf() };
  vtkIdType NbOfLevels = 0;
};

// ---------------------
// construct structure: nb of blocks per levels, and origin.
// Local origin is the min of all origins found:
// so we will get a Global Origin with a simple min reduction
void ConstructLocalInfo(const conduit_cpp::Node& node, LocalInfo& rankInfo)
{
  double origin[3] = { 0, 0, 0 };

  rankInfo.NbOfLeaves = node.number_of_children();

  for (conduit_index_t cc = 0; cc < rankInfo.NbOfLeaves; ++cc)
  {
    const auto child = node.child(cc);
    if (child.has_path("state"))
    {
      const int level = child["state/level"].to_int32();
      const int domain_id = child["state/domain_id"].to_int32();
      if (std::size_t(level) >= rankInfo.BlocksPerLevel.size())
      {
        rankInfo.BlocksPerLevel.resize(level + 1);
        rankInfo.BlocksPerLevel[level] = 0;
      }
      rankInfo.DomainBlockLevelIds[domain_id] = { level, rankInfo.BlocksPerLevel[level] };
      rankInfo.BlocksPerLevel[level]++;

      origin[0] = child["coordsets/coords/origin/x"].to_float64();
      origin[1] = child["coordsets/coords/origin/y"].to_float64();
      origin[2] = child["coordsets/coords/origin/z"].to_float64();
      // check global origin
      if (origin[0] <= rankInfo.Origin[0] && origin[1] <= rankInfo.Origin[1] &&
        origin[2] <= rankInfo.Origin[2])
      {
        rankInfo.Origin[0] = origin[0];
        rankInfo.Origin[1] = origin[1];
        rankInfo.Origin[2] = origin[2];
      }
    }
  }
}

// ---------------------
// MPI comm: reduce nb of levels, blocks and origin
void GatherInfos(LocalInfo& rankInfo, GlobalInfo& globalInfo)
{
  vtkMultiProcessController* controller = vtkMultiProcessController::GetGlobalController();

  const vtkIdType levels_local = vtkIdType(rankInfo.BlocksPerLevel.size());

  if (globalInfo.NbOfProcesses == 1)
  {
    globalInfo.NbOfLevels = levels_local;
    std::copy(rankInfo.Origin, rankInfo.Origin + 3, globalInfo.Origin);
  }
  else if (controller)
  {
    controller->AllReduce(&levels_local, &globalInfo.NbOfLevels, 1, vtkCommunicator::MAX_OP);
    controller->AllReduce(rankInfo.Origin, globalInfo.Origin, 3, vtkCommunicator::MIN_OP);
  }

  // need the total number of blocks across all processes
  rankInfo.BlocksPerLevel.resize(globalInfo.NbOfLevels, 0); // set the extra values created to 0
  globalInfo.BlocksPerLevelAndRank.resize(globalInfo.NbOfLevels * globalInfo.NbOfProcesses);
  // the ordering of the blocks for AMR is first all level 0 blocks, then all level 1 blocks, ...
  // at each level we order based on proc rank first and then local id
  if (globalInfo.NbOfProcesses == 1)
  {
    globalInfo.BlocksPerLevelAndRank = rankInfo.BlocksPerLevel;
  }
  else if (controller)
  {
    controller->AllGather(rankInfo.BlocksPerLevel.data(), globalInfo.BlocksPerLevelAndRank.data(),
      globalInfo.NbOfLevels);
  }

  rankInfo.NbOfBlocks = vtkIdType(rankInfo.DomainBlockLevelIds.size());
  globalInfo.NbOfBlocks = std::accumulate(
    globalInfo.BlocksPerLevelAndRank.begin(), globalInfo.BlocksPerLevelAndRank.end(), 0);

  // the offset for the start of each block at each level
  rankInfo.BlockOffsets.resize(globalInfo.NbOfLevels, 0);
  if (globalInfo.NbOfProcesses > 1)
  {
    for (vtkIdType level = 0; level < globalInfo.NbOfLevels; level++)
    {
      vtkIdType offset(0);
      for (int rank = 0; rank < rankInfo.Rank; rank++)
      {
        offset += globalInfo.BlocksPerLevelAndRank[level + rank * globalInfo.NbOfLevels];
      }
      rankInfo.BlockOffsets[level] = offset;
    }
  }
}

// ---------------------
// initialize AMR: each rank has same structure
// nb of Levels and nb of Blocks per level.
// init each bloc with nullptr
void InitializeLocalAMR(GlobalInfo& globalInfo, vtkOverlappingAMR* amr)
{
  std::vector<int> blocksPerLevelGlobal(globalInfo.NbOfLevels, 0);
  for (vtkIdType level = 0; level < globalInfo.NbOfLevels; level++)
  {
    for (int rank = 0; rank < globalInfo.NbOfProcesses; rank++)
    {
      blocksPerLevelGlobal[level] +=
        globalInfo.BlocksPerLevelAndRank[level + rank * globalInfo.NbOfLevels];
    }
  }
  amr->Initialize(globalInfo.NbOfLevels, blocksPerLevelGlobal.data());
  for (int level = 0; level < globalInfo.NbOfLevels; ++level)
  {
    for (int block = 0; block < blocksPerLevelGlobal[level]; ++block)
    {
      amr->SetDataSet(level, block, nullptr);
    }
  }

  // set origin
  amr->SetOrigin(globalInfo.Origin);
}

// ---------------------
// Fill local data
void FillLocalData(const conduit_cpp::Node& child, const LocalInfo& rankInfo,
  const GlobalInfo& globalInfo, vtkOverlappingAMR* amr)
{
  double origin[3];
  double spacing[3];

  if (!child.has_path("state"))
  {
    return;
  }

  int pdims[3] = { 0, 0, 0 };
  const int domain_id = child["state/domain_id"].to_int32();
  const int level = child["state/level"].to_int32();

  origin[0] = child["coordsets/coords/origin/x"].to_float64();
  origin[1] = child["coordsets/coords/origin/y"].to_float64();
  origin[2] = child["coordsets/coords/origin/z"].to_float64();
  spacing[0] = child["coordsets/coords/spacing/dx"].to_float64();
  spacing[1] = child["coordsets/coords/spacing/dy"].to_float64();
  spacing[2] = child["coordsets/coords/spacing/dz"].to_float64();
  pdims[0] = child["coordsets/coords/dims/i"].to_int32();
  pdims[1] = child["coordsets/coords/dims/j"].to_int32();
  pdims[2] = child["coordsets/coords/dims/k"].to_int32();

  vtkNew<vtkUniformGrid> ug;
  ug->Initialize();
  ug->SetOrigin(origin);
  ug->SetSpacing(spacing);
  ug->SetDimensions(pdims);

  if (child.has_path("fields"))
  {
    const auto fields = child["fields"];
    vtkConduitToDataObject::AddFieldData(ug, fields, true);
  }

  vtkAMRBox box(origin, pdims, spacing, globalInfo.Origin, amr->GetGridDescription());
  // set level spacing
  amr->SetSpacing(level, spacing);
  amr->SetAMRBox(
    level, rankInfo.DomainBlockLevelIds.at(domain_id).second + rankInfo.BlockOffsets[level], box);
  amr->SetDataSet(
    level, rankInfo.DomainBlockLevelIds.at(domain_id).second + rankInfo.BlockOffsets[level], ug);

  if (child.has_path("nestsets/nest/windows"))
  {
    const auto& windows = child["nestsets/nest/windows"];
    const auto window_count = windows.number_of_children();
    for (int i = 0; i < window_count; ++i)
    {
      const auto& window = windows.child(i);
      if (window.has_path("ratio") && window.has_path("domain_type"))
      {
        amr->SetRefinementRatio(level, window["ratio/i"].to_int32());
        break;
      }
    }
  }
}

// distribute AMRBoxes to all processes
void DistributeAMRBoxes(
  const LocalInfo& rankInfo, const GlobalInfo& globalInfo, vtkOverlappingAMR* amr)
{
  vtkMultiProcessController* controller = vtkMultiProcessController::GetGlobalController();

  if (globalInfo.NbOfProcesses == 1 || !controller)
  {
    return;
  }
  std::vector<vtkIdType> boxBoundsOffsets(globalInfo.NbOfProcesses, 0);
  std::vector<vtkIdType> boxBoundsCounts(globalInfo.NbOfProcesses);
  std::vector<int> boxExtentsLocal(8 * rankInfo.NbOfBlocks, 0);
  std::vector<int> boxExtentsGlobal(8 * globalInfo.NbOfBlocks, 0);

  for (int rank = 0; rank < globalInfo.NbOfProcesses; ++rank)
  {
    int num_blocks = 0;
    for (int level = 0; level < globalInfo.NbOfLevels; level++)
    {
      num_blocks += globalInfo.BlocksPerLevelAndRank[level + rank * globalInfo.NbOfLevels];
    }
    boxBoundsCounts[rank] = num_blocks * 8;
    if (rank > 0)
    {
      boxBoundsOffsets[rank] = boxBoundsCounts[rank - 1] + boxBoundsOffsets[rank - 1];
    }
  }

  int local_index = 0;
  for (std::map<int, std::pair<int, int>>::const_iterator it = rankInfo.DomainBlockLevelIds.begin();
       it != rankInfo.DomainBlockLevelIds.end(); ++it)
  {
    int level = it->second.first;
    int id = it->second.second + rankInfo.BlockOffsets[level];

    vtkAMRBox box = amr->GetAMRBox(level, id);
    const int* loCorner = box.GetLoCorner();
    const int* hiCorner = box.GetHiCorner();
    int offset = 8 * local_index;
    boxExtentsLocal[offset + 0] = level;
    boxExtentsLocal[offset + 1] = id;
    boxExtentsLocal[offset + 2] = loCorner[0];
    boxExtentsLocal[offset + 3] = loCorner[1];
    boxExtentsLocal[offset + 4] = loCorner[2];
    boxExtentsLocal[offset + 5] = hiCorner[0];
    boxExtentsLocal[offset + 6] = hiCorner[1];
    boxExtentsLocal[offset + 7] = hiCorner[2];
    ++local_index;
  }

  controller->AllGatherV(boxExtentsLocal.data(), boxExtentsGlobal.data(), boxExtentsLocal.size(),
    boxBoundsCounts.data(), boxBoundsOffsets.data());
  for (int block = 0; block < globalInfo.NbOfBlocks; ++block)
  {
    int level = boxExtentsGlobal[8 * block];
    int id = boxExtentsGlobal[8 * block + 1];
    int* dims = &boxExtentsGlobal[8 * block + 2];
    vtkAMRBox box(dims[0], dims[1], dims[2], dims[3], dims[4], dims[5]);
    amr->SetAMRBox(level, id, box);
  }

  // set homogeneous spacing
  std::vector<double> local_spacings(globalInfo.NbOfLevels, 0.);
  for (int level = 0; level < globalInfo.NbOfLevels; level++)
  {
    double lvl_spacing[3];
    amr->GetSpacing(level, lvl_spacing);
    local_spacings[level] = lvl_spacing[0];
  }
  std::vector<double> global_spacing(globalInfo.NbOfLevels);
  controller->AllReduce(
    local_spacings.data(), global_spacing.data(), globalInfo.NbOfLevels, vtkCommunicator::MAX_OP);
  for (int level = 0; level < globalInfo.NbOfLevels; level++)
  {
    // spacing is homogeneous in all 3 directions.
    double lvl_spacing[3] = { global_spacing[level], global_spacing[level], global_spacing[level] };
    amr->SetSpacing(level, lvl_spacing);
  }
}
};

namespace vtkConduitToDataObject
{
VTK_ABI_NAMESPACE_BEGIN

//----------------------------------------------------------------------------
struct FieldMetadata
{
  vtkSmartPointer<vtkDataArray> ValuesToReplace = nullptr;
  vtkSmartPointer<vtkDataArray> ReplacementValues = nullptr;
  std::string AttributeType;

  static vtkDataSetAttributes::AttributeTypes GetDataSetAttributeType(
    const std::string& otherAttributeTypeName)
  {
    for (int i = 0; i < vtkDataSetAttributes::AttributeTypes::NUM_ATTRIBUTES; ++i)
    {
      const std::string attributeTypeName = vtkDataSetAttributes::GetAttributeTypeAsString(i);
      if (vtksys::SystemTools::UpperCase(otherAttributeTypeName) ==
        vtksys::SystemTools::UpperCase(attributeTypeName))
      {
        return static_cast<vtkDataSetAttributes::AttributeTypes>(i);
      }
    }
    return vtkDataSetAttributes::AttributeTypes::NUM_ATTRIBUTES;
  }

  static bool IsGhostsAttributeType(const std::string& otherAttributeTypeName)
  {
    return vtksys::SystemTools::UpperCase(otherAttributeTypeName) == "GHOSTS";
  }
};

//----------------------------------------------------------------------------
struct ReplaceValuesWorker
{
  template <typename Array1T, typename Array2T, typename Array3T>
  void operator()(Array1T* valuesToReplace, Array2T* replacementValues, Array3T* array) const
  {
    const vtkIdType numValuesToReplace = valuesToReplace->GetNumberOfTuples();
    auto valuesToReplaceRange = vtk::DataArrayValueRange(valuesToReplace);
    auto replacementValuesRange = vtk::DataArrayValueRange(replacementValues);
    auto arrayRange = vtk::DataArrayValueRange(array);

    vtkSMPTools::For(0, array->GetNumberOfTuples(),
      [&](vtkIdType begin, vtkIdType end)
      {
        for (vtkIdType inputIdx = begin; inputIdx < end; ++inputIdx)
        {
          for (vtkIdType repValueId = 0; repValueId < numValuesToReplace; ++repValueId)
          {
            if (valuesToReplaceRange[repValueId] == arrayRange[inputIdx])
            {
              arrayRange[inputIdx] = replacementValuesRange[repValueId];
              break;
            }
          }
        }
      });
  }
};

//----------------------------------------------------------------------------
bool FillPartitionedDataSet(vtkPartitionedDataSet* output, const conduit_cpp::Node& node)
{
#if !VTK_MODULE_ENABLE_VTK_AcceleratorsVTKmDataModel
  // conduit verify_shapes_node dereferences the shapes array to compare
  // values with the values in the shapes_map
  // if the shapes array is in device memory this test crashes
  // https://github.com/LLNL/conduit/issues/1404
  conduit_cpp::Node info;
  if (!conduit_cpp::BlueprintMesh::verify(node, info))
  {
    vtkLogF(ERROR, "Mesh blueprint verification failed!");
    return false;
  }
  vtkLogF(TRACE, "Mesh blueprint verified!");
#endif
  std::map<std::string, vtkSmartPointer<vtkDataSet>> datasets;

  // process "topologies".
  auto topologies = node["topologies"];

  for (conduit_index_t i = 0, nchildren = topologies.number_of_children(); i < nchildren; ++i)
  {
    auto child = topologies.child(i);
    try
    {
      if (auto ds = CreateMesh(child, node["coordsets"]))
      {
        auto idx = output->GetNumberOfPartitions();
        output->SetPartition(idx, ds);
        output->GetMetaData(idx)->Set(vtkCompositeDataSet::NAME(), child.name().c_str());
        datasets[child.name()] = ds;
      }
    }
    catch (std::exception& e)
    {
      vtkLogF(ERROR, "failed to process '../topologies/%s'.", child.name().c_str());
      vtkLogF(ERROR, "ERROR: \n%s\n", e.what());
      return false;
    }
  }

  // add field data at leaf level
  if (node.has_path("state/fields"))
  {
    for (const auto& dataset : datasets)
    {
      AddFieldData(dataset.second.Get(), node["state/fields"]);
    }
  }

  // process "fields"
  if (!node.has_path("fields"))
  {
    return true;
  }

  // read "state/metadata/vtk_fields"
  std::map<std::string, FieldMetadata> fieldMetadata;
  if (node.has_path("state/metadata/vtk_fields"))
  {
    auto fieldsMetadata = node["state/metadata/vtk_fields"];
    for (conduit_index_t i = 0, nchildren = fieldsMetadata.number_of_children(); i < nchildren; ++i)
    {
      auto fieldMetadataNode = fieldsMetadata.child(i);
      const auto& name = fieldMetadataNode.name();
      try
      {
        // read values_to_replace and replacement_values if they exist
        if (fieldMetadataNode.has_path("values_to_replace") &&
          fieldMetadataNode.has_path("replacement_values"))
        {
          auto valuesToReplace = fieldMetadataNode["values_to_replace"];
          fieldMetadata[name].ValuesToReplace =
            vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&valuesToReplace));
          auto replacementValues = fieldMetadataNode["replacement_values"];
          fieldMetadata[name].ReplacementValues =
            vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&replacementValues));
          if (fieldMetadata[name].ValuesToReplace->GetNumberOfTuples() !=
            fieldMetadata[name].ReplacementValues->GetNumberOfTuples())
          {
            vtkLogF(ERROR,
              "values_to_replace and replacement_values should have equal size for field '%s'.",
              name.c_str());
            return false;
          }
          if (fieldMetadata[name].ValuesToReplace->GetNumberOfComponents() != 1 ||
            fieldMetadata[name].ReplacementValues->GetNumberOfComponents() != 1)
          {
            vtkLogF(ERROR,
              "values_to_replace and replacement_values should have 1 component for field '%s'.",
              name.c_str());
            return false;
          }
        }
        // read attribute type if it exists
        if (fieldMetadataNode.has_path("attribute_type"))
        {
          const std::string& attributeType = fieldMetadataNode["attribute_type"].as_string();
          // check if the attribute type is valid
          if (FieldMetadata::GetDataSetAttributeType(attributeType) !=
              vtkDataSetAttributes::AttributeTypes::NUM_ATTRIBUTES ||
            FieldMetadata::IsGhostsAttributeType(attributeType))
          {
            fieldMetadata[name].AttributeType = attributeType;
          }
          else
          {
            vtkLogF(
              ERROR, "invalid attribute type '%s' for '%s'.", attributeType.c_str(), name.c_str());
            return false;
          }
        }
      }
      catch (std::exception& e)
      {
        vtkLogF(ERROR, "failed to process '../state/metadata/vtk_fields/%s'.", name.c_str());
        vtkLogF(ERROR, "ERROR: \n%s\n", e.what());
        return false;
      }
    }
  }
  auto fields = node["fields"];
  for (conduit_index_t i = 0, nchildren = fields.number_of_children(); i < nchildren; ++i)
  {
    auto fieldNode = fields.child(i);
    const auto& fieldname = fieldNode.name();
    try
    {
      auto dataset = datasets.at(fieldNode["topology"].as_string());
      const auto vtk_association = GetAssociation(fieldNode["association"].as_string());
      auto dsa = dataset->GetAttributes(vtk_association);
      auto values = fieldNode["values"];
      std::size_t dataset_size;
      if (values.number_of_children() == 0)
      {
        dataset_size = values.dtype().number_of_elements();
      }
      else
      {
        dataset_size = values.child(0).dtype().number_of_elements();
      }
      if (dataset_size > 0)
      {
        // This code path should be removed once MCGhostArrayToVTKGhostArray is removed.
        if (fieldname == "ascent_ghosts")
        {
          // convert ascent ghost information into VTK ghost information
          // the VTK array is named vtkDataSetAttributes::GhostArrayName()
          // and has different values.
          auto array = vtkConduitArrayUtilities::MCGhostArrayToVTKGhostArray(
            conduit_cpp::c_node(&values), dsa->IsA("vtkCellData"));
          dsa->AddArray(array);
          continue;
        }
        vtkSmartPointer<vtkDataArray> array =
          vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&values), fieldname);
        if (array->GetNumberOfTuples() != dataset->GetNumberOfElements(vtk_association))
        {
          throw std::runtime_error("mismatched tuple count!");
        }
        if (fieldMetadata.find(fieldname) != fieldMetadata.end())
        {
          const auto& metadata = fieldMetadata[fieldname];
          // replace values if needed
          if (metadata.ValuesToReplace && metadata.ReplacementValues)
          {
            ReplaceValuesWorker replaceValuesWorker;
            if (!vtkArrayDispatch::Dispatch3SameValueType::Execute(metadata.ValuesToReplace.Get(),
                  metadata.ReplacementValues.Get(), array.Get(), replaceValuesWorker))
            {
              replaceValuesWorker(
                metadata.ValuesToReplace.Get(), metadata.ReplacementValues.Get(), array.Get());
            }
          }
          // extract the attribute type, and change the array name if needed
          auto dsaAttributeType = vtkDataSetAttributes::AttributeTypes::NUM_ATTRIBUTES;
          if (!metadata.AttributeType.empty())
          {
            dsaAttributeType = FieldMetadata::GetDataSetAttributeType(metadata.AttributeType);
            if (FieldMetadata::IsGhostsAttributeType(metadata.AttributeType))
            {
              // convert its name to the VTK ghost array name
              array->SetName(vtkDataSetAttributes::GhostArrayName());
              // ensure the array is unsigned char
              if (!array->IsA("vtkUnsignedCharArray"))
              {
                auto ghostArray = vtkSmartPointer<vtkUnsignedCharArray>::New();
                ghostArray->DeepCopy(array);
                array = ghostArray;
              }
            }
          }
          if (dsaAttributeType != vtkDataSetAttributes::AttributeTypes::NUM_ATTRIBUTES)
          {
            dsa->SetAttribute(array, dsaAttributeType);
          }
          else
          {
            dsa->AddArray(array);
          }
        }
        else
        {
          dsa->AddArray(array);
        }
      }
    }
    catch (std::exception& e)
    {
      vtkLogF(ERROR, "failed to process '../fields/%s'.", fieldname.c_str());
      vtkLogF(ERROR, "ERROR: \n%s\n", e.what());
      return false;
    }
  }

  return true;
}

//----------------------------------------------------------------------------
bool FillPartionedDataSet(vtkPartitionedDataSet* output, const conduit_cpp::Node& meshNode)
{
  return FillPartitionedDataSet(output, meshNode);
}

//----------------------------------------------------------------------------
bool FillAMRMesh(vtkOverlappingAMR* amr, const conduit_cpp::Node& node)
{
  AMRUtils::LocalInfo rankInfo;
  AMRUtils::GlobalInfo globalInfo;

  vtkMultiProcessController* controller = vtkMultiProcessController::GetGlobalController();
  if (controller)
  {
    // if VTK was initialized properly controller should be non-null but that's not always
    // the case so safer to check if controller is available
    globalInfo.NbOfProcesses = controller->GetNumberOfProcesses();
    rankInfo.Rank = controller->GetLocalProcessId();
  }
  AMRUtils::ConstructLocalInfo(node, rankInfo);

  AMRUtils::GatherInfos(rankInfo, globalInfo);

  AMRUtils::InitializeLocalAMR(globalInfo, amr);

  for (conduit_index_t cc = 0; cc < rankInfo.NbOfLeaves; ++cc)
  {
    const auto child = node.child(cc);
    AMRUtils::FillLocalData(child, rankInfo, globalInfo, amr);
  }

  AMRUtils::DistributeAMRBoxes(rankInfo, globalInfo, amr);

  if (globalInfo.NbOfProcesses == 1)
  {
    vtkAMRUtilities::BlankCells(amr);
  }
  else if (controller)
  {
    vtkParallelAMRUtilities::BlankCells(amr, controller);
  }

  return true;
}

//----------------------------------------------------------------------------
vtkSmartPointer<vtkDataSet> CreateMesh(
  const conduit_cpp::Node& topology, const conduit_cpp::Node& coordsets)
{
  // get the coordset for this topology element.
  auto coords = coordsets[topology["coordset"].as_string()];
  if (topology["type"].as_string() == "uniform" && coords["type"].as_string() == "uniform")
  {
    return CreateImageData(coords);
  }

  if (topology["type"].as_string() == "rectilinear" && coords["type"].as_string() == "rectilinear")
  {
    return CreateRectilinearGrid(coords);
  }

  if (topology["type"].as_string() == "structured" && coords["type"].as_string() == "explicit")
  {
    return CreateStructuredGrid(topology, coords);
  }

  if (coords["type"].as_string() == "explicit" && topology["type"].as_string() == "unstructured" &&
    topology.has_path("elements/shape"))
  {
    std::string shape = topology["elements/shape"].as_string();
    if (shape != "mixed")
    {
      return CreateMonoShapedUnstructuredGrid(topology, coords);
    }
    else if (topology.has_path("elements/shape_map") && topology.has_path("elements/shapes"))
    {
      return CreateMixedUnstructuredGrid(topology, coords);
    }
    // if there are no cells in the Conduit mesh, return an empty ug
    return vtkSmartPointer<vtkUnstructuredGrid>::New();
  }

  if (coords["type"].as_string() == "explicit" && topology["type"].as_string() == "points")
  {
    auto pointset = vtkSmartPointer<vtkPointSet>::New();
    pointset->SetPoints(CreatePoints(coords));
    return pointset;
  }

  throw std::runtime_error("unsupported topology or coordset");
}

//----------------------------------------------------------------------------
vtkSmartPointer<vtkImageData> CreateImageData(const conduit_cpp::Node& coordset)
{
  auto image = vtkSmartPointer<vtkImageData>::New();
  int dims[3] = { 1, 1, 1 };
  const char* dims_paths[] = { "dims/i", "dims/j", "dims/k" };
  double origin[3] = { 0, 0, 0 };
  const char* origin_paths[] = { "origin/x", "origin/y", "origin/z" };
  double spacing[3] = { 1, 1, 1 };
  const char* spacing_paths[] = { "spacing/dx", "spacing/dy", "spacing/dz" };
  for (int cc = 0; cc < 3; ++cc)
  {
    if (coordset.has_path(dims_paths[cc]))
    {
      dims[cc] = coordset[dims_paths[cc]].to_int32();
    }
    if (coordset.has_path(origin_paths[cc]))
    {
      origin[cc] = coordset[origin_paths[cc]].to_double();
    }
    if (coordset.has_path(spacing_paths[cc]))
    {
      spacing[cc] = coordset[spacing_paths[cc]].to_double();
    }
  }
  image->SetOrigin(origin);
  image->SetSpacing(spacing);
  image->SetDimensions(dims);

  return image;
}

//----------------------------------------------------------------------------
/**
 * The "const" of values_xyz is necessary to avoid creating a new object.
 * If value_xyz is not const, coordset["values/xyz"] must NOT be const either
 * to call the correct copy constructor.
 */
vtkSmartPointer<vtkRectilinearGrid> CreateRectilinearGrid(const conduit_cpp::Node& coordset)
{
  auto rectilinearGrid = vtkSmartPointer<vtkRectilinearGrid>::New();

  const bool has_x_values = coordset.has_path("values/x");
  const conduit_cpp::Node values_x = has_x_values ? coordset["values/x"] : conduit_cpp::Node();
  const bool has_y_values = coordset.has_path("values/y");
  const conduit_cpp::Node values_y = has_y_values ? coordset["values/y"] : conduit_cpp::Node();
  const bool has_z_values = coordset.has_path("values/z");
  const conduit_cpp::Node values_z = has_z_values ? coordset["values/z"] : conduit_cpp::Node();

  vtkIdType x_dimension = 1;
  vtkSmartPointer<vtkDataArray> xArray;
  if (has_x_values)
  {
    xArray = vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&values_x), "xcoords");
    x_dimension = xArray->GetNumberOfTuples();
  }

  vtkIdType y_dimension = 1;
  vtkSmartPointer<vtkDataArray> yArray;
  if (has_y_values)
  {
    yArray = vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&values_y), "ycoords");
    y_dimension = yArray->GetNumberOfTuples();
  }

  vtkIdType z_dimension = 1;
  vtkSmartPointer<vtkDataArray> zArray;
  if (has_z_values)
  {
    zArray = vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&values_z), "zcoords");
    z_dimension = zArray->GetNumberOfTuples();
  }
  rectilinearGrid->SetDimensions(x_dimension, y_dimension, z_dimension);

  if (has_x_values)
  {
    rectilinearGrid->SetXCoordinates(xArray);
  }
  if (has_y_values)
  {
    rectilinearGrid->SetYCoordinates(yArray);
  }
  if (has_z_values)
  {
    rectilinearGrid->SetZCoordinates(zArray);
  }

  return rectilinearGrid;
}

//----------------------------------------------------------------------------
vtkSmartPointer<vtkStructuredGrid> CreateStructuredGrid(
  const conduit_cpp::Node& topology, const conduit_cpp::Node& coordset)
{
  auto sg = vtkSmartPointer<vtkStructuredGrid>::New();

  sg->SetPoints(CreatePoints(coordset));
  sg->SetDimensions(
    topology.has_path("elements/dims/i") ? topology["elements/dims/i"].to_int32() + 1 : 1,
    topology.has_path("elements/dims/j") ? topology["elements/dims/j"].to_int32() + 1 : 1,
    topology.has_path("elements/dims/k") ? topology["elements/dims/k"].to_int32() + 1 : 1);
  return sg;
}

//----------------------------------------------------------------------------
vtkSmartPointer<vtkDataSet> CreateMonoShapedUnstructuredGrid(
  const conduit_cpp::Node& topologyNode, const conduit_cpp::Node& coordset)
{
  auto unstructured = vtkSmartPointer<vtkUnstructuredGrid>::New();
  conduit_cpp::Node connectivity = topologyNode["elements/connectivity"];
  const conduit_cpp::DataType dtype0 = connectivity.dtype();
  const auto nb_cells = dtype0.number_of_elements();
  unstructured->SetPoints(CreatePoints(coordset));
  vtkIdType numberOfPoints = unstructured->GetNumberOfPoints();
  const auto vtk_cell_type = GetCellType(topologyNode["elements/shape"].as_string());
  if (nb_cells > 0)
  {
    if (vtk_cell_type == VTK_POLYHEDRON)
    {
      int8_t id;
      bool working;
      bool isDevicePointer =
        vtkConduitArrayUtilities::IsDevicePointer(connectivity.element_ptr(0), id, working);
      if (isDevicePointer)
      {
        throw std::runtime_error("Viskores does not support VTK_POLYHEDRON cell type");
      }
      // polyhedra uses O2M and not M2C arrays, so need to process it
      // differently.
      conduit_cpp::Node t_elements = topologyNode["elements"];
      conduit_cpp::Node t_subelements = topologyNode["subelements"];
      auto elements = vtkConduitArrayUtilities::O2MRelationToVTKCellArray(
        numberOfPoints, conduit_cpp::c_node(&t_elements));
      auto subelements = vtkConduitArrayUtilities::O2MRelationToVTKCellArray(
        numberOfPoints, conduit_cpp::c_node(&t_subelements));

      SetPolyhedralCells(unstructured, elements, subelements);
    }
    else if (vtk_cell_type == VTK_POLYGON)
    {
      // polygons use O2M and not M2C arrays, so need to process it
      // differently.
      conduit_cpp::Node t_elements = topologyNode["elements"];
      auto cellArray = vtkConduitArrayUtilities::O2MRelationToVTKCellArray(
        numberOfPoints, conduit_cpp::c_node(&t_elements));
      unstructured->SetCells(vtk_cell_type, cellArray);
    }
    else
    {
      const auto cell_size = GetNumberOfPointsInCellType(vtk_cell_type);
      auto cellArray = vtkConduitArrayUtilities::MCArrayToVTKCellArray(
        numberOfPoints, vtk_cell_type, cell_size, conduit_cpp::c_node(&connectivity));
      unstructured->SetCells(vtk_cell_type, cellArray);
    }
  }

  return unstructured;
}

/**
 * See CreateMixedUnstructuredGrid.
 */
void SetMixedPolyhedralCells(
  vtkUnstructuredGrid* ug, vtkDataArray* shapes, vtkCellArray* elements, vtkCellArray* subelements)
{
  auto cellTypes = vtk::MakeSmartPointer(vtkUnsignedCharArray::SafeDownCast(shapes));
  if (!cellTypes)
  {
    cellTypes = vtkSmartPointer<vtkUnsignedCharArray>::New();
    cellTypes->DeepCopy(shapes);
  }
  // if there are no subelements
  if (!subelements || subelements->GetNumberOfCells() == 0)
  {
    // This is a simple case where we have a mixed cell type, but no polyhedra.
    ug->SetPolyhedralCells(cellTypes, elements, nullptr, nullptr);
    return;
  }

  vtkNew<vtkCellArray> connectivity;
  vtkNew<vtkCellArray> faces;
  vtkNew<vtkCellArray> faceLocations;
  subelements->IsStorage64Bit()
    ? faces->ConvertTo64BitStorage() && faceLocations->ConvertTo64BitStorage()
    : faces->ConvertTo64BitStorage() && faceLocations->ConvertTo32BitStorage();

  connectivity->AllocateEstimate(elements->GetNumberOfCells(), 10);
  faces->AllocateExact(
    subelements->GetNumberOfCells(), subelements->GetConnectivityArray()->GetNumberOfTuples());
  faceLocations->AllocateExact(elements->GetNumberOfCells(), subelements->GetNumberOfCells());

  vtkIdType numCellFaces, numFacePointIDs, numCellPointIDs;
  const vtkIdType *cellGlobalFaceIDs, *facePointIDs, *cellPointIDs;
  std::set<vtkIdType> cellPointIDsSet;
  vtkIdType globalFaceId = 0;
  auto cellTypesRange = vtk::DataArrayValueRange<1>(cellTypes);
  for (vtkIdType i = 0, numCells = elements->GetNumberOfCells(); i < numCells; ++i)
  {
    const unsigned char& cellType = cellTypesRange[i];
    if (cellType == VTK_POLYHEDRON)
    {
      cellPointIDsSet.clear();
      // https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#polyhedra
      // This in conduit describes a polyhedron' global face IDs, and not its point IDs.
      // Even after https://gitlab.kitware.com/vtk/vtk/-/issues/18190 was resolved, the conduit
      // format is still different from the VTK format, so we need to do some conversions for VTK.
      elements->GetCellAtId(i, numCellFaces, cellGlobalFaceIDs);

      faceLocations->InsertNextCell(numCellFaces);
      for (vtkIdType j = 0; j < numCellFaces; ++j)
      {
        faceLocations->InsertCellPoint(globalFaceId++);

        subelements->GetCellAtId(cellGlobalFaceIDs[j], numFacePointIDs, facePointIDs);
        // If VTK' polyhedron format had a notion of global face IDs, we could just use
        // subelements as faces, instead of copying each face, but sadly that's not true.
        faces->InsertNextCell(numFacePointIDs, facePointIDs);
        // accumulate point IDs from all faces in this polyhedron
        cellPointIDsSet.insert(facePointIDs, facePointIDs + numFacePointIDs);
      }

      // Insert the points IDs of this polyhedron into the 'connectivity' array.
      connectivity->InsertNextCell(static_cast<int>(cellPointIDsSet.size()));
      for (const auto& pt : cellPointIDsSet)
      {
        connectivity->InsertCellPoint(pt);
      }
    }
    else
    {
      // A normal cell's point IDs that are just copied over.
      elements->GetCellAtId(i, numCellPointIDs, cellPointIDs);
      connectivity->InsertNextCell(numCellPointIDs, cellPointIDs);
      // This indicates that this cell has no faces that need to be recorded.
      faceLocations->InsertNextCell(0);
    }
  }

  connectivity->Squeeze();
  faces->Squeeze();
  faceLocations->Squeeze();

  ug->SetPolyhedralCells(cellTypes, connectivity, faceLocations, faces);
}

//----------------------------------------------------------------------------
vtkSmartPointer<vtkDataSet> CreateMixedUnstructuredGrid(
  const conduit_cpp::Node& topologyNode, const conduit_cpp::Node& coords)
{
  auto unstructured = vtkSmartPointer<vtkUnstructuredGrid>::New();
  // mixed shapes definition
  conduit_cpp::Node shape_map = topologyNode["elements/shape_map"];
  auto connectivity = topologyNode["elements/connectivity"];
  int8_t id;
  bool working;
  bool isDevicePointer =
    vtkConduitArrayUtilities::IsDevicePointer(connectivity.element_ptr(0), id, working);
  if (isDevicePointer && !working)
  {
    throw std::runtime_error("Viskores does not support device" + std::to_string(id));
  }

  // check presence of polyhedra
  bool hasPolyhedra(false);
  conduit_index_t nCells = shape_map.number_of_children();
  for (conduit_index_t i = 0; i < nCells && !hasPolyhedra; ++i)
  {
    auto child = shape_map.child(i);
    int cellType = child.to_int32();
    hasPolyhedra |= (cellType == VTK_POLYHEDRON);
  }
  if (isDevicePointer && hasPolyhedra)
  {
    throw std::runtime_error("Viskores does not support VTK_POLYHEDRON cell type");
  }

  // if polyhedra are present, the subelements should be present as well.
  if (hasPolyhedra &&
    !(topologyNode.has_path("subelements/shape") &&
      topologyNode.has_path("subelements/shape_map") &&
      topologyNode.has_path("subelements/shapes")))
  {
    throw std::runtime_error("no subelements found for polyhedral cell definition.");
  }
  if (nCells > 0)
  {
    unstructured->SetPoints(CreatePoints(coords));
    auto numberOfPoints = unstructured->GetNumberOfPoints();

    conduit_cpp::Node t_elements = topologyNode["elements"];
    conduit_cpp::Node t_elementShapes = topologyNode["elements/shapes"];

    auto shapes =
      vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&t_elementShapes));
    auto elements = vtkConduitArrayUtilities::O2MRelationToVTKCellArray(
      numberOfPoints, conduit_cpp::c_node(&t_elements));
    if (!elements || !shapes)
    {
      throw std::runtime_error("elements or elements/shapes not available (nullptr)");
    }

    if (hasPolyhedra)
    {
      conduit_cpp::Node t_subelements = topologyNode["subelements"];
      auto subelements = vtkConduitArrayUtilities::O2MRelationToVTKCellArray(
        numberOfPoints, conduit_cpp::c_node(&t_subelements));
      if (!subelements)
      {
        throw std::runtime_error("subelements not available (nullptr)");
      }
      SetMixedPolyhedralCells(unstructured, shapes, elements, subelements);
    }
    else
    {
      SetMixedPolyhedralCells(unstructured, shapes, elements, nullptr);
    }
  }

  return unstructured;
}

//----------------------------------------------------------------------------
bool AddFieldData(vtkDataObject* output, const conduit_cpp::Node& stateFields, bool isAMReX)
{
  auto field_data = output->GetFieldData();
  auto number_of_children = stateFields.number_of_children();
  for (conduit_index_t child_index = 0; child_index < number_of_children; ++child_index)
  {
    auto field_node = stateFields.child(child_index);
    const auto& field_name = field_node.name();

    try
    {
      std::size_t dataset_size = 0;
      if (field_node.number_of_children() == 0)
      {
        dataset_size = field_node.dtype().number_of_elements();
      }
      else
      {
        dataset_size = field_node.child(0).dtype().number_of_elements();
      }

      if (dataset_size > 0)
      {
        vtkSmartPointer<vtkAbstractArray> dataArray;
        if (field_node.dtype().is_string())
        {
          auto stringArray = vtkSmartPointer<vtkStringArray>::New();
          stringArray->SetNumberOfTuples(1);
          stringArray->SetValue(0, field_node.as_string().c_str());
          dataArray = stringArray;
          dataArray->SetName(field_name.c_str());
        }
        else
        {
          dataArray = vtkConduitArrayUtilities::MCArrayToVTKArray(
            conduit_cpp::c_node(&field_node), field_name);
        }

        if (dataArray)
        {
          if (isAMReX)
          {
            auto ug = vtkUniformGrid::SafeDownCast(output);
            const auto vtk_association = GetAssociation(field_node["association"].as_string());
            auto dsa = ug->GetAttributes(vtk_association);
            dsa->AddArray(dataArray);
          }
          else
          {
            field_data->AddArray(dataArray);
          }
        }

        if ((field_name == "time" || field_name == "TimeValue") && field_node.dtype().is_number())
        {
          // let's also set DATA_TIME_STEP.
          output->GetInformation()->Set(vtkDataObject::DATA_TIME_STEP(), field_node.to_float64());
        }
      }
    }
    catch (std::exception& e)
    {
      vtkLogF(ERROR, "failed to process '../state/fields/%s'.", field_name.c_str());
      vtkLogF(ERROR, "ERROR: \n%s\n", e.what());
      return false;
    }
  }
  return true;
}

//----------------------------------------------------------------------------
vtkSmartPointer<vtkPoints> CreatePoints(const conduit_cpp::Node& coords)
{
  if (coords["type"].as_string() != "explicit")
  {
    throw std::runtime_error("invalid node!");
  }

  conduit_cpp::Node values = coords["values"];
  auto array = vtkConduitArrayUtilities::MCArrayToVTKArray(conduit_cpp::c_node(&values), "coords");
  if (array == nullptr)
  {
    throw std::runtime_error("failed to convert to VTK array!");
  }
  if (array->GetNumberOfComponents() < 3)
  {
    array = vtkConduitArrayUtilities::SetNumberOfComponents(array, 3);
  }
  else if (array->GetNumberOfComponents() > 3)
  {
    throw std::runtime_error("points cannot have more than 3 components!");
  }

  auto pts = vtkSmartPointer<vtkPoints>::New();
  pts->SetData(array);
  return pts;
}

//----------------------------------------------------------------------------
void SetPolyhedralCells(
  vtkUnstructuredGrid* grid, vtkCellArray* elements, vtkCellArray* subelements)
{
  vtkNew<vtkUnsignedCharArray> cellTypes;
  cellTypes->SetNumberOfTuples(elements->GetNumberOfCells());
  cellTypes->FillValue(static_cast<unsigned char>(VTK_POLYHEDRON));
  SetMixedPolyhedralCells(grid, cellTypes, elements, subelements);
}

//----------------------------------------------------------------------------
vtkIdType GetNumberOfPointsInCellType(int vtk_cell_type)
{
  switch (vtk_cell_type)
  {
    case VTK_VERTEX:
      return 1;
    case VTK_LINE:
      return 2;
    case VTK_TRIANGLE:
      return 3;
    case VTK_QUAD:
    case VTK_TETRA:
      return 4;
    case VTK_PYRAMID:
      return 5;
    case VTK_WEDGE:
      return 6;
    case VTK_HEXAHEDRON:
      return 8;
    default:
      throw std::runtime_error("unsupported cell type " + std::to_string(vtk_cell_type));
  }
}

//----------------------------------------------------------------------------
int GetCellType(const std::string& shape)
{
  if (shape == "point")
  {
    return VTK_VERTEX;
  }
  else if (shape == "line")
  {
    return VTK_LINE;
  }
  else if (shape == "tri")
  {
    return VTK_TRIANGLE;
  }
  else if (shape == "quad")
  {
    return VTK_QUAD;
  }
  else if (shape == "tet")
  {
    return VTK_TETRA;
  }
  else if (shape == "hex")
  {
    return VTK_HEXAHEDRON;
  }
  else if (shape == "polyhedral")
  {
    return VTK_POLYHEDRON;
  }
  else if (shape == "polygonal")
  {
    return VTK_POLYGON;
  }
  else if (shape == "wedge")
  {
    return VTK_WEDGE;
  }
  else if (shape == "pyramid")
  {
    return VTK_PYRAMID;
  }
  else
  {
    throw std::runtime_error("unsupported shape " + shape);
  }
}

//----------------------------------------------------------------------------
int GetAssociation(const std::string& assoc)
{
  if (assoc == "element")
  {
    return vtkDataObject::CELL;
  }
  else if (assoc == "vertex")
  {
    return vtkDataObject::POINT;
  }

  throw std::runtime_error("unsupported association " + assoc);
}
VTK_ABI_NAMESPACE_END
} // vtkDataObjectToConduit namespace