File: data_model.py

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 205,916 kB
  • sloc: cpp: 2,336,565; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 178; javascript: 165; objc: 153; tcl: 59
file content (861 lines) | stat: -rw-r--r-- 27,122 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
"""This module provides classes that allow numpy style access
to VTK datasets. See examples at bottom.
"""

from contextlib import suppress
from vtkmodules.vtkCommonCore import vtkPoints, vtkAbstractArray, vtkDataArray
from vtkmodules.vtkCommonDataModel import (
    vtkCellArray,
    vtkDataObject,
    vtkFieldData,
    vtkDataSetAttributes,
    vtkPointData,
    vtkCellData,
    vtkDataObject,
    vtkImageData,
    vtkMultiBlockDataSet,
    vtkPolyData,
    vtkStructuredGrid,
    vtkRectilinearGrid,
    vtkUnstructuredGrid,
    vtkOverlappingAMR,
    vtkPartitionedDataSet,
    vtkPartitionedDataSetCollection,
)

import weakref

NUMPY_AVAILABLE = False

with suppress(ImportError):
    import numpy
    from vtkmodules.numpy_interface import dataset_adapter as dsa

    NUMPY_AVAILABLE = True


class FieldDataBase(object):
    def __init__(self):
        self.association = None
        self.dataset = None

    def __getitem__(self, idx):
        """Implements the [] operator. Accepts an array name or index."""
        return self.get_array(idx)

    def __setitem__(self, name, value):
        """Implements the [] operator. Accepts an array name or index."""
        return self.set_array(name, value)

    def get_array(self, idx):
        "Given an index or name, returns a VTKArray."
        if isinstance(idx, int) and idx >= self.GetNumberOfArrays():
            raise IndexError("array index out of range")
        vtkarray = super().GetArray(idx)

        if not NUMPY_AVAILABLE:
            return vtkarray if vtkarray else self.GetAbstractArray(idx)

        if not vtkarray:
            vtkarray = self.GetAbstractArray(idx)
            if vtkarray:
                return vtkarray
            return dsa.NoneArray
        array = dsa.vtkDataArrayToVTKArray(vtkarray, self.dataset)
        array.Association = self.association
        return array

    def __contains__(self, aname):
        """Returns true if the container contains arrays
        with the given name, false otherwise"""
        return self.HasArray(aname)

    def keys(self):
        """Returns the names of the arrays as a list."""
        kys = []
        narrays = self.GetNumberOfArrays()
        for i in range(narrays):
            name = self.GetAbstractArray(i).GetName()
            if name:
                kys.append(name)
        return tuple(kys)

    def values(self):
        """Returns the arrays as a tuple."""
        vals = []
        narrays = self.GetNumberOfArrays()
        for i in range(narrays):
            a = self.get_array(i)
            if a.GetName():
                vals.append(a)
        return tuple(vals)

    def items(self):
        """Returns a tuple of pairs (name, array)"""
        pairs = []
        narrays = self.GetNumberOfArrays()
        for i in range(narrays):
            arr = self.get_array(i)
            name = arr.GetName()
            if name:
                pairs.append((name, arr))
        return tuple(pairs)

    def set_array(self, name, narray):
        """Appends a new array to the dataset attributes."""
        if not NUMPY_AVAILABLE:
            if isinstance(narray, vtkAbstractArray):
                narray.SetName(name)
                self.AddArray(narray)
            return

        if narray is dsa.NoneArray:
            # if NoneArray, nothing to do.
            return

        if self.association == vtkDataObject.POINT:
            arrLength = self.dataset.GetNumberOfPoints()
        elif self.association == vtkDataObject.CELL:
            arrLength = self.dataset.GetNumberOfCells()
        elif (
            self.association == vtkDataObject.ROW
            and self.dataset.GetNumberOfColumns() > 0
        ):
            arrLength = self.dataset.GetNumberOfRows()
        else:
            if not isinstance(narray, numpy.ndarray):
                arrLength = 1
            else:
                arrLength = narray.shape[0]

        # Fixup input array length:
        if (
            not isinstance(narray, numpy.ndarray) or numpy.ndim(narray) == 0
        ):  # Scalar input
            dtype = narray.dtype if isinstance(narray, numpy.ndarray) else type(narray)
            tmparray = numpy.empty(arrLength, dtype=dtype)
            tmparray.fill(narray)
            narray = tmparray
        elif narray.shape[0] != arrLength:  # Vector input
            components = 1
            for l in narray.shape:
                components *= l
            tmparray = numpy.empty((arrLength, components), dtype=narray.dtype)
            tmparray[:] = narray.flatten()
            narray = tmparray

        shape = narray.shape

        if len(shape) == 3:
            # Array of matrices. We need to make sure the order  in memory is right.
            # If column order (c order), transpose. VTK wants row order (fortran
            # order). The deep copy later will make sure that the array is contiguous.
            # If row order but not contiguous, transpose so that the deep copy below
            # does not happen.
            size = narray.dtype.itemsize
            if (narray.strides[1] / size == 3 and narray.strides[2] / size == 1) or (
                narray.strides[1] / size == 1
                and narray.strides[2] / size == 3
                and not narray.flags.contiguous
            ):
                narray = narray.transpose(0, 2, 1)

        # If array is not contiguous, make a deep copy that is contiguous
        if not narray.flags.contiguous:
            narray = numpy.ascontiguousarray(narray)

        # Flatten array of matrices to array of vectors
        if len(shape) == 3:
            narray = narray.reshape(shape[0], shape[1] * shape[2])

        # this handle the case when an input array is directly appended on the
        # output. We want to make sure that the array added to the output is not
        # referring to the input dataset.
        copy = dsa.VTKArray(narray)
        try:
            copy.VTKObject = narray.VTKObject
        except AttributeError:
            pass
        arr = dsa.numpyTovtkDataArray(copy, name)
        self.AddArray(arr)

    def __eq__(self, other: object) -> bool:
        """Test dict-like equivalency."""
        # here we check if other is the same class or a subclass of self.
        if not isinstance(other, type(self)):
            return False

        if self is other:
            return True

        """
        If numpy is not available, only check for identity without comparing contents of the data arrays
        """
        if not NUMPY_AVAILABLE:
            return False

        if set(self.keys()) != set(other.keys()):
            return False

        # verify the value of the arrays
        for key, value in other.items():
            if not numpy.array_equal(value, self[key]):
                return False

        return True

    def __iter__(self):
        return iter(self.keys())

    def __len__(self):
        return self.GetNumberOfArrays()

@vtkFieldData.override
class FieldData(FieldDataBase, vtkFieldData):
    pass


class DataSetAttributesBase(FieldDataBase):
    pass


@vtkDataSetAttributes.override
class DataSetAttributes(DataSetAttributesBase, vtkDataSetAttributes):
    def __eq__(self, other: object) -> bool:
        """Test dict-like equivalency."""
        if not super().__eq__(other):
            return False

        for attr in [
            "GetScalars",
            "GetVectors",
            "GetNormals",
            "GetTangents",
            "GetTCoords",
            "GetTensors",
            "GetGlobalIds",
            "GetPedigreeIds",
            "GetRationalWeights",
            "GetHigherOrderDegrees",
            "GetProcessIds",
        ]:
            self_attr = getattr(self, attr)()
            other_attr = getattr(other, attr)()
            if self_attr and other_attr:
                if self_attr.GetName() != other_attr.GetName():
                    return False
            elif self_attr != other_attr:
                return False

        return True


@vtkPointData.override
class PointData(DataSetAttributesBase, vtkPointData):
    pass


@vtkCellData.override
class CellData(DataSetAttributesBase, vtkCellData):
    pass


class CompositeDataSetAttributesIterator(object):
    def __init__(self, cdsa):
        self._cdsa = cdsa
        if cdsa:
            self._itr = iter(cdsa.keys())
        else:
            self._itr = None

    def __iter__(self):
        return self

    def __next__(self):
        if not self._cdsa:
            raise StopIteration

        name = next(self._itr)
        return self._cdsa[name]

    def next(self):
        return self.__next__()


class CompositeDataSetAttributes(object):
    """This is a python friendly wrapper for vtkDataSetAttributes for composite
    datasets. Since composite datasets themselves don't have attribute data, but
    the attribute data is associated with the leaf nodes in the composite
    dataset, this class simulates a DataSetAttributes interface by taking a
    union of DataSetAttributes associated with all leaf nodes."""

    def __init__(self, dataset, association):
        self.DataSet = dataset
        self.Association = association
        self.ArrayNames = []
        self.Arrays = {}

        # build the set of arrays available in the composite dataset. Since
        # composite datasets can have partial arrays, we need to iterate over
        # all non-null blocks in the dataset.
        self.__determine_arraynames()

    def __determine_arraynames(self):
        array_set = set()
        array_list = []
        for dataset in self.DataSet:
            dsa = dataset.GetAttributesAsFieldData(self.Association)
            for array_name in dsa.keys():
                if array_name not in array_set:
                    array_set.add(array_name)
                    array_list.append(array_name)
        self.ArrayNames = array_list

    def modified(self):
        """Rescans the contained dataset to update the
        internal list of arrays."""
        self.__determine_arraynames()

    def __contains__(self, aname):
        """Returns true if the container contains arrays
        with the given name, false otherwise"""
        return aname in self.ArrayNames

    def keys(self):
        """Returns the names of the arrays as a tuple."""
        return tuple(self.ArrayNames)

    def values(self):
        """Returns all the arrays as a tuple."""
        arrays = []
        for array in self:
            arrays.append(array)
        return tuple(arrays)

    def items(self):
        """Returns (name, array) pairs as a tuple."""
        items = []
        for name in self.keys():
            items.append((name, self[name]))
        return tuple(items)

    def __getitem__(self, idx):
        """Implements the [] operator. Accepts an array name."""
        return self.get_array(idx)

    def __setitem__(self, name, narray):
        """Implements the [] operator. Accepts an array name."""
        return self.set_array(name, narray)

    def set_array(self, name, narray):
        """Appends a new array to the composite dataset attributes."""
        if not NUMPY_AVAILABLE:
            # don't know how to handle composite dataset attribute when numpy not around
            raise NotImplementedError("Only available with numpy")

        if narray is dsa.NoneArray:
            # if NoneArray, nothing to do.
            return

        added = False
        if not isinstance(narray, dsa.VTKCompositeDataArray):  # Scalar input
            for ds in self.DataSet:
                ds.GetAttributesAsFieldData(self.Association).set_array(name, narray)
                added = True
            if added:
                self.ArrayNames.append(name)
                # don't add the narray since it's a scalar. GetArray() will create a
                # VTKCompositeArray on-demand.
        else:
            for ds, array in zip(self.DataSet, narray.Arrays):
                if array is not None:
                    ds.GetAttributesAsFieldData(self.Association).set_array(name, array)
                    added = True
            if added:
                self.ArrayNames.append(name)
                self.Arrays[name] = weakref.ref(narray)

    def get_array(self, idx):
        """Given a name, returns a VTKCompositeArray."""
        arrayname = idx

        if not NUMPY_AVAILABLE:
            # don't know how to handle composite dataset attribute when numpy not around
            raise NotImplementedError("Only available with numpy")

        if arrayname not in self.ArrayNames:
            return dsa.NoneArray
        if arrayname not in self.Arrays or self.Arrays[arrayname]() is None:
            array = dsa.VTKCompositeDataArray(
                dataset=self.DataSet, name=arrayname, association=self.Association
            )
            self.Arrays[arrayname] = weakref.ref(array)
        else:
            array = self.Arrays[arrayname]()
        return array

    def __iter__(self):
        """Iterators on keys"""
        return iter(self.ArrayNames)

    def __len__(self):
        return len(self.ArrayNames)

# class DataSet(DataObjectBase):
class DataSet(object):
    def __init__(self, **kwargs) -> None:
        self._numpy_attrs = []

    @property
    def point_data(self):
        pd = super().GetPointData()
        pd.dataset = self
        pd.association = self.POINT
        return pd

    @property
    def cell_data(self):
        cd = super().GetCellData()
        cd.dataset = self
        cd.association = self.CELL
        return cd

    @property
    def field_data(self):
        fd = super().GetFieldData()
        if fd:
            fd.dataset = self
            fd.association = self.FIELD
        return fd

    def __eq__(self, other: object) -> bool:
        """Test equivalency between data objects."""
        if not isinstance(self, type(other)):
            return False

        if self is other:
            return True

        """
        If numpy is not available, only check for identity without comparing contents of the data arrays
        """
        if not NUMPY_AVAILABLE:
            return False

        for attr in self._numpy_attrs:
            if hasattr(self, attr):
                if not numpy.array_equal(getattr(self, attr), getattr(other, attr)):
                    return False

        for attr in ["field_data", "point_data", "cell_data"]:
            if getattr(self, attr) != getattr(other, attr):
                return False

        return True

    def convert_to_unstructured_grid(self):
        from vtkmodules.vtkFiltersCore import vtkExtractCells

        ecells = vtkExtractCells()
        ecells.SetInputData(self)
        ecells.ExtractAllCellsOn()
        ecells.Update()
        return ecells.GetOutput()


class PointSet(DataSet):
    def __init__(self, **kwargs) -> None:
        DataSet.__init__(self, **kwargs)
        self._numpy_attrs.append("points")

    @property
    def points(self):
        pts = self.GetPoints()

        if not NUMPY_AVAILABLE:
            return pts

        if not pts or not pts.GetData():
            return None
        return dsa.vtkDataArrayToVTKArray(pts.GetData())

    @points.setter
    def points(self, points):
        if isinstance(points, vtkPoints):
            self.SetPoints(points)
            return

        if not NUMPY_AVAILABLE:
            raise ValueError("Expect vtkPoints")

        pts = dsa.numpyTovtkDataArray(points, "points")
        vtkpts = vtkPoints()
        vtkpts.SetData(pts)
        self.SetPoints(vtkpts)


@vtkUnstructuredGrid.override
class UnstructuredGrid(PointSet, vtkUnstructuredGrid):
    def __init__(self, **kwargs):
        PointSet.__init__(self, **kwargs)
        vtkUnstructuredGrid.__init__(self, **kwargs)

    @property
    def cells(self):
        ca = self.GetCells()
        conn_vtk = ca.GetConnectivityArray()
        offsets_vtk = ca.GetOffsetsArray()
        ct_vtk = self.GetCellTypesArray()

        if not NUMPY_AVAILABLE:
            return {
                "connectivity": conn_vtk,
                "offsets": offsets_vtk,
                "cell_types": ct_vtk,
            }

        conn = dsa.vtkDataArrayToVTKArray(conn_vtk)
        offsets = dsa.vtkDataArrayToVTKArray(offsets_vtk)
        ct = dsa.vtkDataArrayToVTKArray(ct_vtk)
        return {"connectivity": conn, "offsets": offsets, "cell_types": ct}

    @cells.setter
    def cells(self, cells):
        ca = vtkCellArray()

        if not NUMPY_AVAILABLE:
            ca.SetData(cells["offsets"], cells["connectivity"])
            self.SetCells(cells["cell_types"], ca)
            return

        conn_vtk = dsa.numpyTovtkDataArray(cells["connectivity"])
        offsets_vtk = dsa.numpyTovtkDataArray(cells["offsets"])
        cell_types_vtk = dsa.numpyTovtkDataArray(cells["cell_types"])
        ca.SetData(offsets_vtk, conn_vtk)
        self.SetCells(cell_types_vtk, ca)


@vtkImageData.override
class ImageData(DataSet, vtkImageData):
    def __init__(self, **kwargs):
        DataSet.__init__(self, **kwargs)
        vtkImageData.__init__(self, **kwargs)


@vtkPolyData.override
class PolyData(PointSet, vtkPolyData):
    def __init__(self, **kwargs) -> None:
        PointSet.__init__(self, **kwargs)
        vtkPolyData.__init__(self, **kwargs)
        self._numpy_attrs.extend(["verts", "lines", "strips", "polys"])

    @property
    def verts_arrays(self):
        ca = self.GetVerts()
        conn_vtk = ca.GetConnectivityArray()
        offsets_vtk = ca.GetOffsetsArray()

        if not NUMPY_AVAILABLE:
            return {
                "connectivity": conn_vtk,
                "offsets": offsets_vtk,
            }

        conn = dsa.vtkDataArrayToVTKArray(conn_vtk)
        offsets = dsa.vtkDataArrayToVTKArray(offsets_vtk)
        return {"connectivity": conn, "offsets": offsets}

    @property
    def lines_arrays(self):
        ca = self.GetLines()
        conn_vtk = ca.GetConnectivityArray()
        offsets_vtk = ca.GetOffsetsArray()

        if not NUMPY_AVAILABLE:
            return {
                "connectivity": conn_vtk,
                "offsets": offsets_vtk,
            }

        conn = dsa.vtkDataArrayToVTKArray(conn_vtk)
        offsets = dsa.vtkDataArrayToVTKArray(offsets_vtk)
        return {"connectivity": conn, "offsets": offsets}

    @property
    def strips_arrays(self):
        ca = self.GetStrips()
        conn_vtk = ca.GetConnectivityArray()
        offsets_vtk = ca.GetOffsetsArray()

        if not NUMPY_AVAILABLE:
            return {
                "connectivity": conn_vtk,
                "offsets": offsets_vtk,
            }

        conn = dsa.vtkDataArrayToVTKArray(conn_vtk)
        offsets = dsa.vtkDataArrayToVTKArray(offsets_vtk)
        return {"connectivity": conn, "offsets": offsets}

    @property
    def polys_arrays(self):
        ca = self.GetPolys()
        conn_vtk = ca.GetConnectivityArray()
        offsets_vtk = ca.GetOffsetsArray()

        if not NUMPY_AVAILABLE:
            return {
                "connectivity": conn_vtk,
                "offsets": offsets_vtk,
            }

        conn = dsa.vtkDataArrayToVTKArray(conn_vtk)
        offsets = dsa.vtkDataArrayToVTKArray(offsets_vtk)
        return {"connectivity": conn, "offsets": offsets}


@vtkRectilinearGrid.override
class RectilinearGrid(DataSet, vtkRectilinearGrid):
    def __init__(self, **kwargs) -> None:
        DataSet.__init__(self, **kwargs)
        vtkRectilinearGrid.__init__(self, **kwargs)
        self._numpy_attrs.extend(["x_coordinates", "y_coordinates", "z_coordinates"])

    @property
    def x_coordinates(self):
        pts = self.GetXCoordinates()

        if not NUMPY_AVAILABLE:
            return pts

        if not pts:
            return None
        return dsa.vtkDataArrayToVTKArray(pts)

    @x_coordinates.setter
    def x_coordinates(self, points):
        if isinstance(points, vtkDataArray):
            self.SetXCoordinates(points)
            return

        if not NUMPY_AVAILABLE:
            raise ValueError("Expect vtkDataArray")

        pts = dsa.numpyTovtkDataArray(points, "x_coords")
        self.SetXCoordinates(pts)

    @property
    def y_coordinates(self):
        pts = self.GetYCoordinates()

        if not NUMPY_AVAILABLE:
            return pts

        if not pts:
            return None
        return dsa.vtkDataArrayToVTKArray(pts)

    @y_coordinates.setter
    def y_coordinates(self, points):
        if isinstance(points, vtkDataArray):
            self.SetYCoordinates(points)
            return

        if not NUMPY_AVAILABLE:
            raise ValueError("Expect vtkDataArray")

        pts = dsa.numpyTovtkDataArray(points, "y_coords")
        self.SetYCoordinates(pts)

    @property
    def z_coordinates(self):
        pts = self.GetZCoordinates()

        if not NUMPY_AVAILABLE:
            return pts

        if not pts:
            return None
        return dsa.vtkDataArrayToVTKArray(pts)

    @z_coordinates.setter
    def z_coordinates(self, points):
        if isinstance(points, vtkDataArray):
            self.SetZCoordinates(points)
            return

        if not NUMPY_AVAILABLE:
            raise ValueError("Expect vtkDataArray")

        pts = dsa.numpyTovtkDataArray(points, "z_coords")
        self.SetZCoordinates(pts)


class CompositeDataIterator(object):
    """Wrapper for a vtkCompositeDataIterator class to satisfy
    the python iterator protocol. This iterator iterates
    over non-empty leaf nodes. To iterate over empty or
    non-leaf nodes, use the vtkCompositeDataIterator directly.
    """

    def __init__(self, cds):
        self.Iterator = cds.NewIterator()
        if self.Iterator:
            self.Iterator.UnRegister(None)
            self.Iterator.GoToFirstItem()

    def __iter__(self):
        return self

    def __next__(self):
        if not self.Iterator:
            raise StopIteration

        if self.Iterator.IsDoneWithTraversal():
            raise StopIteration
        retVal = self.Iterator.GetCurrentDataObject()
        self.Iterator.GoToNextItem()
        return retVal

    def next(self):
        return self.__next__()

    def __getattr__(self, name):
        """Returns attributes from the vtkCompositeDataIterator."""
        return getattr(self.Iterator, name)


class CompositeDataSetBase(object):
    """A wrapper for vtkCompositeData and subclasses that makes it easier
    to access Point/Cell/Field data as VTKCompositeDataArrays. It also
    provides a Python type iterator."""

    def __init__(self, **kwargs):
        self._PointData = None
        self._CellData = None
        self._FieldData = None
        self._Points = None

    def __iter__(self):
        "Creates an iterator for the contained datasets."
        return CompositeDataIterator(self)

    def get_attributes(self, type):
        """Returns the attributes specified by the type as a
        CompositeDataSetAttributes instance."""
        return CompositeDataSetAttributes(self, type)

    @property
    def point_data(self):
        "Returns the point data as a DataSetAttributes instance."
        if self._PointData is None or self._PointData() is None:
            pdata = self.get_attributes(vtkDataObject.POINT)
            self._PointData = weakref.ref(pdata)
        return self._PointData()

    @property
    def cell_data(self):
        "Returns the cell data as a DataSetAttributes instance."
        if self._CellData is None or self._CellData() is None:
            cdata = self.get_attributes(vtkDataObject.CELL)
            self._CellData = weakref.ref(cdata)
        return self._CellData()

    @property
    def field_data(self):
        "Returns the field data as a DataSetAttributes instance."
        if self._FieldData is None or self._FieldData() is None:
            fdata = self.get_attributes(vtkDataObject.FIELD)
            self._FieldData = weakref.ref(fdata)
        return self._FieldData()

    @property
    def points(self):
        "Returns the points as a VTKCompositeDataArray instance."
        if not NUMPY_AVAILABLE:
            # don't know how to handle composite dataset when numpy not around
            raise NotImplementedError("Only available with numpy")

        if self._Points is None or self._Points() is None:
            pts = []
            for ds in self:
                try:
                    _pts = ds.Points
                except AttributeError:
                    _pts = None

                if _pts is None:
                    pts.append(dsa.NoneArray)
                else:
                    pts.append(_pts)
            if len(pts) == 0 or all([a is dsa.NoneArray for a in pts]):
                cpts = dsa.NoneArray
            else:
                cpts = dsa.VTKCompositeDataArray(pts, dataset=self)
            self._Points = weakref.ref(cpts)
        return self._Points()


@vtkPartitionedDataSet.override
class PartitionedDataSet(CompositeDataSetBase, vtkPartitionedDataSet):
    def append(self, dataset):
        self.SetPartition(self.GetNumberOfPartitions(), dataset)

@vtkPartitionedDataSetCollection.override
class PartitionedDataSetCollection(CompositeDataSetBase, vtkPartitionedDataSetCollection):
    def append(self, dataset):
        self.SetPartitionedDataSet(self.GetNumberOfPartitionedDataSets(), dataset)

@vtkOverlappingAMR.override
class OverlappingAMR(CompositeDataSetBase, vtkOverlappingAMR):
    pass

@vtkMultiBlockDataSet.override
class MultiBlockDataSet(CompositeDataSetBase, vtkMultiBlockDataSet):
    pass

@vtkStructuredGrid.override
class StructuredGrid(PointSet, vtkStructuredGrid):
    def __init__(self, **kwargs):
        PointSet.__init__(self, **kwargs)
        vtkStructuredGrid.__init__(self, **kwargs)

    @property
    def x_coordinates(self):
        if not NUMPY_AVAILABLE:
            raise NotImplementedError("Only available with numpy")

        dims = [0,0,0]
        self.GetDimensions(dims)
        return self.points[:, 0].reshape(dims, order="F")

    @property
    def y_coordinates(self):
        if not NUMPY_AVAILABLE:
            raise NotImplementedError("Only available with numpy")

        dims = [0,0,0]
        self.GetDimensions(dims)
        return self.points[:, 1].reshape(dims, order="F")

    @property
    def z_coordinates(self):
        if not NUMPY_AVAILABLE:
            raise NotImplementedError("Only available with numpy")
        dims = [0,0,0]
        self.GetDimensions(dims)
        return self.points[:, 2].reshape(dims, order="F")


# -----------------------------------------------------------------------------
# Handle pickle registration
# -----------------------------------------------------------------------------
with suppress(ImportError):
    import copyreg
    from vtkmodules.util.pickle_support import serialize_VTK_data_object

    copyreg.pickle(PolyData, serialize_VTK_data_object)
    copyreg.pickle(UnstructuredGrid, serialize_VTK_data_object)
    copyreg.pickle(ImageData, serialize_VTK_data_object)
    copyreg.pickle(PartitionedDataSet, serialize_VTK_data_object)
    copyreg.pickle(StructuredGrid, serialize_VTK_data_object)