File: TestPiecewiseFunction.cxx

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 205,984 kB
  • sloc: cpp: 2,336,570; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 181; javascript: 165; objc: 153; tcl: 59
file content (184 lines) | stat: -rw-r--r-- 6,296 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause

#include "vtkPiecewiseFunction.h"

#include "vtkNew.h"

#include <cmath>
#include <vector>

#define TEST_ASSERT_FUZZY_EQUAL(expect, actual)                                                    \
  do                                                                                               \
  {                                                                                                \
    if (std::fabs((expect) - (actual)) >= 1e-12)                                                   \
    {                                                                                              \
      std::cerr << "Error at line " << __LINE__ << ": Expected value " << (expect) << ", got "     \
                << (actual) << std::endl;                                                          \
      return EXIT_FAILURE;                                                                         \
    }                                                                                              \
  } while (false)

int BasicTestPiecewiseFunction()
{
  vtkNew<vtkPiecewiseFunction> func;
  func->AllowDuplicateScalarsOn();

  // Add some points that will give easily predictable interpolations.
  func->AddPoint(0., -2.);
  func->AddPoint(50., 0.);
  int ret = func->AddPoint(50., 2.);
  if (ret != 2)
  {
    std::cerr << "Error adding duplicated point" << std::endl;
    return EXIT_FAILURE;
  }

  func->AddPoint(100., 5.);

  // Check that the interpolations are correct.
  TEST_ASSERT_FUZZY_EQUAL(-1., func->GetValue(25.));
  TEST_ASSERT_FUZZY_EQUAL(3.5, func->GetValue(75.));

  // Check that point removing is working
  func->RemovePoint(50., 2.);
  TEST_ASSERT_FUZZY_EQUAL(2.5, func->GetValue(75.));
  func->AddPoint(50., 2.);

  func->RemovePoint(50.);
  TEST_ASSERT_FUZZY_EQUAL(0., func->GetValue(25.));

  return EXIT_SUCCESS;
}

//----------------------------------------------------------------------------
// Test the interpolation search method
int TestInterpolationSearchMethod()
{
  // we will create two piecewise functions,
  // one with a linear distributed sampling
  // one with a non linear sampling
  // number of points in the piecewise function
  const int Ndata = 15000;

  // number of interpolations asked to the piecewise function
  const int N = 5 * Ndata;

  std::vector<double> linearInterlacedData(2 * Ndata, 0);
  std::vector<double> nonLinearInterlacedData(2 * Ndata, 0);

  vtkNew<vtkPiecewiseFunction> lin;
  vtkNew<vtkPiecewiseFunction> nonLin;

  for (int i = 0; i < Ndata; i++)
  {
    double time = 1.0 + static_cast<double>(2 * i) / static_cast<double>(Ndata) * (3.0 - 1.0);
    double value = std::exp(time);

    // linearly distributed samples
    linearInterlacedData[2 * i] = time;
    linearInterlacedData[2 * i + 1] = value;

    // non linearly distributed samples
    nonLinearInterlacedData[2 * i] = 0.54 * time * time + 1.89 * time;
    nonLinearInterlacedData[2 * i + 1] = value;
  }

  lin->FillFromDataPointer(Ndata, linearInterlacedData.data());
  nonLin->FillFromDataPointer(Ndata, nonLinearInterlacedData.data());

  // Test first if the update search method is pertinent
  lin->UpdateSearchMethod();
  nonLin->UpdateSearchMethod();

  int method = lin->GetAutomaticSearchMethod();
  if (method != static_cast<int>(vtkPiecewiseFunction::INTERPOLATION_SEARCH))
  {
    std::cerr << "Error at line " << __LINE__ << ": interpolation search method expected"
              << std::endl;
    return EXIT_FAILURE;
  }

  method = nonLin->GetAutomaticSearchMethod();
  if (method != static_cast<int>(vtkPiecewiseFunction::BINARY_SEARCH))
  {
    std::cerr << "Error at line " << __LINE__ << ": binary search method expected" << std::endl;
    return EXIT_FAILURE;
  }

  // Then compare the two methods with linear and non linear samples
  lin->SetUseCustomSearchMethod(true);
  lin->SetCustomSearchMethod(vtkPiecewiseFunction::BINARY_SEARCH);
  nonLin->SetUseCustomSearchMethod(true);
  nonLin->SetCustomSearchMethod(vtkPiecewiseFunction::BINARY_SEARCH);

  std::vector<double> linearTableBinary(N, 0);
  std::vector<double> nonLinearTableBinary(N, 0);
  std::vector<double> linearTableInterpolation(N, 0);
  std::vector<double> nonLinearTableInterpolation(N, 0);

  lin->GetTable(0, 8, N, linearTableBinary.data());
  nonLin->GetTable(0, 8, N, nonLinearTableBinary.data());

  lin->SetCustomSearchMethod(vtkPiecewiseFunction::INTERPOLATION_SEARCH);
  nonLin->SetCustomSearchMethod(vtkPiecewiseFunction::INTERPOLATION_SEARCH);

  lin->GetTable(0, 8, N, linearTableInterpolation.data());
  nonLin->GetTable(0, 8, N, nonLinearTableInterpolation.data());

  for (int k = 0; k < N; ++k)
  {
    TEST_ASSERT_FUZZY_EQUAL(linearTableBinary[k], linearTableInterpolation[k]);
    TEST_ASSERT_FUZZY_EQUAL(nonLinearTableBinary[k], nonLinearTableInterpolation[k]);
  }

  return EXIT_SUCCESS;
}

//----------------------------------------------------------------------------
// Test if the interpolation is correct on a few data points
int TestGetTable()
{
  // number of points in the piecewise function
  const int Ndata = 6;
  // number of interpolations asked to the piecewise function
  const int N = 9;

  // expected result
  const double res[9] = { 2.718281828459, 2.718281828459, 3.684359911713, 5.133477036594,
    7.803374275898, 10.923088402692, 16.42055751499, 23.654739499744, 34.362347229412 };

  std::vector<double> interlacedData(2 * Ndata, 0);
  std::vector<double> table(N, 0);
  vtkNew<vtkPiecewiseFunction> f1;

  for (int i = 0; i < Ndata; i++)
  {
    double time = 1.0 + static_cast<double>(2 * i) / Ndata * (3 - 1);
    double value = std::exp(time);
    interlacedData[2 * i] = time;
    interlacedData[2 * i + 1] = value;
  }

  f1->FillFromDataPointer(Ndata, interlacedData.data());
  f1->GetTable(0.5, 3.5, N, table.data());

  for (int k = 0; k < N; ++k)
  {
    TEST_ASSERT_FUZZY_EQUAL(res[k], table[k]);
  }

  return EXIT_SUCCESS;
}

int TestPiecewiseFunction(int, char*[])
{
  // Store up any errors, return non-zero if something fails.
  int retVal = 0;

  retVal += BasicTestPiecewiseFunction();
  retVal += TestInterpolationSearchMethod();
  retVal += TestGetTable();

  return retVal;
}