File: TestSMPFeatures.cxx

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 205,984 kB
  • sloc: cpp: 2,336,570; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 181; javascript: 165; objc: 153; tcl: 59
file content (221 lines) | stat: -rw-r--r-- 6,460 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// SPDX-FileCopyrightText: Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// SPDX-License-Identifier: BSD-3-Clause

// .NAME
// .SECTION Description
// This tests the code used in Documentation/Doxygen/SMPTools.md.

#include "vtkFloatArray.h"
#include "vtkMath.h"
#include "vtkMultiThreader.h"
#include "vtkNew.h"
#include "vtkPoints.h"
#include "vtkSMPThreadLocal.h"
#include "vtkSMPTools.h"

#include <array>
#include <vector>

namespace
{

// Compute a bounding hull with the planes provided.
struct HullFunctor
{
  vtkPoints* InPts;
  std::vector<double>& Planes;

  HullFunctor(vtkPoints* inPts, std::vector<double>& planes)
    : InPts(inPts)
    , Planes(planes)
  {
  }

  void operator()(vtkIdType ptId, vtkIdType endPtId)
  {
    vtkPoints* inPts = this->InPts;
    std::vector<double>& planes = this->Planes;
    auto numPlanes = planes.size() / 4;

    for (; ptId < endPtId; ++ptId)
    {
      double v, coord[3];
      inPts->GetPoint(ptId, coord);
      for (size_t j = 0; j < numPlanes; j++)
      {
        v = -(planes[j * 4 + 0] * coord[0] + planes[j * 4 + 1] * coord[1] +
          planes[j * 4 + 2] * coord[2]);
        // negative means further in + direction of plane
        if (v < planes[j * 4 + 3])
        {
          planes[j * 4 + 3] = v;
        }
      }
    }
  }
}; // HullFunctor

using BoundsArray = std::array<double, 6>;
using TLS = vtkSMPThreadLocal<BoundsArray>;

// Compute bounds of a set of points.
struct BoundsFunctor
{
  vtkFloatArray* Pts;
  BoundsArray Bounds;
  TLS LocalBounds;

  BoundsFunctor(vtkFloatArray* pts)
    : Pts(pts)
  {
  }

  // Initialize thread local storage
  void Initialize()
  {
    // The first call to .Local() will create the array,
    // all others will return the same.
    std::array<double, 6>& bds = this->LocalBounds.Local();
    bds[0] = VTK_DOUBLE_MAX;
    bds[1] = -VTK_DOUBLE_MAX;
    bds[2] = VTK_DOUBLE_MAX;
    bds[3] = -VTK_DOUBLE_MAX;
    bds[4] = VTK_DOUBLE_MAX;
    bds[5] = -VTK_DOUBLE_MAX;
  }

  // Process the range of points [begin,end)
  void operator()(vtkIdType begin, vtkIdType end)
  {
    BoundsArray& lbounds = this->LocalBounds.Local();
    float* x = this->Pts->GetPointer(3 * begin);
    for (vtkIdType i = begin; i < end; i++)
    {
      lbounds[0] = (x[0] < lbounds[0] ? x[0] : lbounds[0]);
      lbounds[1] = (x[0] > lbounds[1] ? x[0] : lbounds[1]);
      lbounds[2] = (x[1] < lbounds[2] ? x[1] : lbounds[2]);
      lbounds[3] = (x[1] > lbounds[3] ? x[1] : lbounds[3]);
      lbounds[4] = (x[2] < lbounds[4] ? x[2] : lbounds[4]);
      lbounds[5] = (x[2] > lbounds[5] ? x[2] : lbounds[5]);

      x += 3;
    }
  }

  // Composite / combine the thread local storage into a global result.
  void Reduce()
  {
    this->Bounds[0] = VTK_DOUBLE_MAX;
    this->Bounds[1] = -VTK_DOUBLE_MAX;
    this->Bounds[2] = VTK_DOUBLE_MAX;
    this->Bounds[3] = -VTK_DOUBLE_MAX;
    this->Bounds[4] = VTK_DOUBLE_MAX;
    this->Bounds[5] = -VTK_DOUBLE_MAX;

    using TLSIter = TLS::iterator;
    TLSIter end = this->LocalBounds.end();
    for (TLSIter itr = this->LocalBounds.begin(); itr != end; ++itr)
    {
      BoundsArray& lBounds = *itr;
      this->Bounds[0] = (this->Bounds[0] < lBounds[0] ? this->Bounds[0] : lBounds[0]);
      this->Bounds[1] = (this->Bounds[1] > lBounds[1] ? this->Bounds[1] : lBounds[1]);
      this->Bounds[2] = (this->Bounds[2] < lBounds[2] ? this->Bounds[2] : lBounds[2]);
      this->Bounds[3] = (this->Bounds[3] > lBounds[3] ? this->Bounds[3] : lBounds[3]);
      this->Bounds[4] = (this->Bounds[4] < lBounds[4] ? this->Bounds[4] : lBounds[4]);
      this->Bounds[5] = (this->Bounds[5] > lBounds[5] ? this->Bounds[5] : lBounds[5]);
    }
  }
}; // BoundsFunctor

// Support for the atomic example.
std::atomic<vtkTypeInt32> TotalAtomic(0);
constexpr int Target = 1000000;
constexpr int NumThreads = 2;

VTK_THREAD_RETURN_TYPE MyFunction(void*)
{
  for (int i = 0; i < Target / NumThreads; i++)
  {
    ++TotalAtomic;
  }
  return VTK_THREAD_RETURN_VALUE;
}

} // anonymous namespace

int TestSMPFeatures(int, char*[])
{
  // Create a random set of points
  constexpr vtkIdType numPts = 1000;
  constexpr vtkIdType numPlanes = 6;

  vtkNew<vtkPoints> pts;
  pts->SetDataTypeToFloat();
  pts->SetNumberOfPoints(numPts);
  for (auto i = 0; i < numPts; ++i)
  {
    pts->SetPoint(i, vtkMath::Random(-1, 1), vtkMath::Random(-1, 1), vtkMath::Random(-1, 1));
  }

  // Define the plane normals
  std::vector<double> planes(numPlanes * 4, 0);
  planes[0] = -1; // define six normals (-x,+x, -y,+y, -z,+z)
  planes[4] = 1;
  planes[9] = -1;
  planes[13] = 1;
  planes[18] = -1;
  planes[22] = 1;

  // // Use a functor to compute the planes
  HullFunctor hull(pts, planes);
  vtkSMPTools::For(0, numPts, hull);
  std::cout << "Planes (functor): " << planes[3] << ", " << planes[7] << ", " << planes[11] << ", "
            << planes[15] << ", " << planes[19] << ", " << planes[23] << "\n";

  // Use a lambda to compute the planes
  planes[3] = 0; // reset v
  planes[7] = 0;
  planes[11] = 0;
  planes[15] = 0;
  planes[19] = 0;
  planes[23] = 0;
  vtkSMPTools::For(0, numPts,
    [&](vtkIdType ptId, vtkIdType endPtId)
    {
      for (; ptId < endPtId; ++ptId)
      {
        double v, coord[3];
        pts->GetPoint(ptId, coord);
        for (auto j = 0; j < numPlanes; j++)
        {
          v = -(planes[j * 4 + 0] * coord[0] + planes[j * 4 + 1] * coord[1] +
            planes[j * 4 + 2] * coord[2]);
          // negative means further in + direction of plane
          if (v < planes[j * 4 + 3])
          {
            planes[j * 4 + 3] = v;
          }
        }
      }
    }); // end lambda

  std::cout << "Planes (lambda): " << planes[3] << ", " << planes[7] << ", " << planes[11] << ", "
            << planes[15] << ", " << planes[19] << ", " << planes[23] << "\n";

  // Compute bounds using Initialize() and Reduce().
  vtkFloatArray* ptsArray = vtkFloatArray::SafeDownCast(pts->GetData());
  BoundsFunctor calcBounds(ptsArray);
  vtkSMPTools::For(0, numPts, calcBounds);
  std::array<double, 6>& bds = calcBounds.Bounds;
  std::cout << "Bounds (: " << bds[0] << "," << bds[1] << ", " << bds[2] << "," << bds[3] << ", "
            << bds[4] << "," << bds[5] << ")\n";

  // Now exercise atomics
  vtkNew<vtkMultiThreader> mt;
  mt->SetSingleMethod(MyFunction, nullptr);
  mt->SetNumberOfThreads(NumThreads);
  mt->SingleMethodExecute();
  std::cout << TotalAtomic.load() << endl;

  return EXIT_SUCCESS;
}