File: Test3DCellsEvaluatePosition.py

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 205,984 kB
  • sloc: cpp: 2,336,570; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 181; javascript: 165; objc: 153; tcl: 59
file content (223 lines) | stat: -rw-r--r-- 6,520 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from vtkmodules.vtkCommonCore import (
    vtkPoints,
    reference,
)
from vtkmodules.vtkCommonDataModel import (
    vtkHexahedron,
    vtkPyramid,
    vtkQuadraticHexahedron,
    vtkQuadraticPyramid,
    vtkQuadraticTetra,
    vtkQuadraticWedge,
    vtkTetra,
    vtkWedge,
)
import sys

# all values should be between 0 and 1
def WithinTol(a, b):
    for i in range(3):
        if abs(a[i] - b[i]) > 0.001:
            return False
    return True

def CheckTetra(success, x, pcoords):
    if x[0] >= 0. and x[0] <= 1.0 and x[1] >= 0. and x[1] <= 1.0 and x[2] >= 0. and x[2] <= 1.0 and x[0]+x[1]+x[2] < 1.01:
        if success != 1:
            print("should have found point ", x, " but did not")
            return False
        elif not WithinTol(x, pcoords):
            print("Parametric inversion failed for ", x, " with value of ", pcoords)
            return False
    else:
        if success == 1:
            print("should NOT have found point ", x, " but did. pcoords is ", pcoords)
            return False
    return True

def CheckHex(success, x, pcoords):
    if x[0] >= 0. and x[0] <= 1.0 and x[1] >= 0. and x[1] <= 1.0 and x[2] >= 0. and x[2] <= 1.0:
        if success != 1:
            print("should have found point ", x, " but did not")
            return False
        elif not WithinTol(x, pcoords):
            print("Parametric inversion failed for ", x, " with value of ", pcoords)
            return False
    else:
        if success == 1:
            print("should NOT have found point ", x, " but did. pcoords is ", pcoords)
            return False
    return True

def CheckPyramid(success, x, pcoords):
    # pcoords not in same coordinate space as x to we shrink it back down
    pcoords2 = [pcoords[0]*(1.-pcoords[2]), pcoords[1]*(1.-pcoords[2]), pcoords[2]]
    if x[0] >= 0. and x[0] <= 1.0-x[2] and x[1] >= 0. and x[1] <= 1.0-x[2] and x[2] >= 0. and x[2] <= 1.0:
        if success != 1:
            print("should have found point ", x, " but did not")
            return False
        elif not WithinTol(x, pcoords2):
            print("Parametric inversion failed for ", x, " with value of ", pcoords2)
            return False
    else:
        if success == 1:
            print("should NOT have found point ", x, " but did. pcoords is ", pcoords2)
            return False
    return True

def CheckWedge(success, x, pcoords):
    # wedge is a bit weird in that the normal of the bottom face (points 0, 1 and 2) using the right-hand rule
    # points away from the top face instead of towards it like the tet does.
    pcoords2 = [pcoords[1], pcoords[0], pcoords[2]]
    if x[0] >= 0. and x[0] <= 1.0 and x[1] >= 0. and x[1] <= 1.0 and x[2] >= 0. and x[2] <= 1.0 and x[0]+x[1] < 1.0001:
        if success != 1:
            print("should have found point ", x, " but did not")
            return False
        elif not WithinTol(x, pcoords2):
            print("Parametric inversion failed for ", x, " with value of ", pcoords2)
            return False
    else:
        if success == 1:
            print("should NOT have found point ", x, " but did. pcoords is ", pcoords2)
            return False
    return True

def CheckCell(cell, checkCellFunction):
    closestPoint = [0., 0., 0.]
    subId = reference(0)
    pcoords = [0., 0., 0.]
    dist2 = reference(0.)
    weights = [0.]*30
    x = [.25, .25, .25]
    for i in range(21):
        x[0] = -1.+3.*i/20.
        for j in range(21):
            x[1] = -1.+3.*j/20.
            for k in range(21):
                x[2] = -1.+3.*k/20.
                success = c.EvaluatePosition(x, closestPoint, subId, pcoords, dist2, weights)
                if not checkCellFunction(success, x, pcoords):
                    return False
    return True

pts = vtkPoints()
pts.SetNumberOfPoints(20) # quadratic hex has the most points with 20

# check Tets
pts.SetPoint(0, 0, 0, 0)
pts.SetPoint(1, 1, 0, 0)
pts.SetPoint(2, 0, 1, 0)
pts.SetPoint(3, 0, 0, 1)
pts.SetPoint(4, 0.5, 0, 0)
pts.SetPoint(5, 0.5, 0.5, 0)
pts.SetPoint(6, 0, 0.5, 0)
pts.SetPoint(7, 0, 0, 0.5)
pts.SetPoint(8, 0.5, 0, 0.5)
pts.SetPoint(9, 0., 0.5, 0.5)

c = vtkTetra()
c.Initialize(4, pts)
if not CheckCell(c, CheckTetra):
    print("Failure for vtkTetra")
    sys.exit(1)

c = vtkQuadraticTetra()
c.Initialize(10, pts)
if not CheckCell(c, CheckTetra):
    print("Failure for vtkQuadraticTetra")
    sys.exit(1)

# check hexes
pts.SetPoint(0, 0, 0, 0)
pts.SetPoint(1, 1, 0, 0)
pts.SetPoint(2, 1, 1, 0)
pts.SetPoint(3, 0, 1, 0)
pts.SetPoint(4, 0, 0, 1)
pts.SetPoint(5, 1, 0, 1)
pts.SetPoint(6, 1, 1, 1)
pts.SetPoint(7, 0, 1, 1)
pts.SetPoint(8, .5, 0, 0)
pts.SetPoint(9, 1, .5, 0)
pts.SetPoint(10, .5, 1, 0)
pts.SetPoint(11, 0, .5, 0)
pts.SetPoint(12, .5, 0, 1)
pts.SetPoint(13, 1, .5, 1)
pts.SetPoint(14, .5, 1, 1)
pts.SetPoint(15, 0, .5, 1)
pts.SetPoint(16, 0, 0, .5)
pts.SetPoint(17, 1, 0, .5)
pts.SetPoint(18, 1, 1, .5)
pts.SetPoint(19, 0, 1, .5)

c = vtkHexahedron()
c.Initialize(8, pts)
if not CheckCell(c, CheckHex):
    print("Failure for vtkHexahedron")
    sys.exit(1)

c = vtkQuadraticHexahedron()
c.Initialize(20, pts)
if not CheckCell(c, CheckHex):
    print("Failure for vtkQuadraticHexahedron")
    sys.exit(1)

# check pyramids
pts.SetPoint(0, 0, 0, 0)
pts.SetPoint(1, 1, 0, 0)
pts.SetPoint(2, 1, 1, 0)
pts.SetPoint(3, 0, 1, 0)
pts.SetPoint(4, 0, 0, 1)
pts.SetPoint(5, .5, 0, 0)
pts.SetPoint(6, 1, .5, 0)
pts.SetPoint(7, .5, 1, 0)
pts.SetPoint(8, 0, .5, 0)
pts.SetPoint(9, 0, 0, .5)
pts.SetPoint(10, .5, 0, .5)
pts.SetPoint(11, .5, .5, .5)
pts.SetPoint(12, 0, .5, .5)

c = vtkPyramid()
c.Initialize(5, pts)
if not CheckCell(c, CheckPyramid):
    print("Failure for vtkPyramid")
    sys.exit(1)

c = vtkQuadraticPyramid()
c.Initialize(13, pts)
if not CheckCell(c, CheckPyramid):
    print("Failure for vtkQuadraticPyramid")
    sys.exit(1)

# check wedges
pts.SetPoint(0, 0, 0, 0)
pts.SetPoint(1, 0, 1, 0)
pts.SetPoint(2, 1, 0, 0)
pts.SetPoint(3, 0, 0, 1)
pts.SetPoint(4, 0, 1, 1)
pts.SetPoint(5, 1, 0, 1)

pts.SetPoint(6, 0, .5, 0)
pts.SetPoint(7, .5, .5, 0)
pts.SetPoint(8, .5, 0, 0)
pts.SetPoint(9, 0, .5, 1)
pts.SetPoint(10, .5, .5, 1)
pts.SetPoint(11, .5, 0, 1)
pts.SetPoint(12, 0, 0, .5)
pts.SetPoint(13, 0, 1, .5)
pts.SetPoint(14, 1, 0, .5)

c = vtkWedge()
c.Initialize(6, pts)
if not CheckCell(c, CheckWedge):
    print("Failure for vtkWedge")
    sys.exit(1)

c = vtkQuadraticWedge()
c.Initialize(15, pts)
if not CheckCell(c, CheckWedge):
    print("Failure for vtkQuadraticWedge")
    sys.exit(1)


print("Success")
sys.exit(0)