1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
#!/usr/bin/env python
from vtkmodules.vtkCommonCore import (
vtkBitArray,
vtkDoubleArray,
vtkUnsignedCharArray,
)
from vtkmodules.vtkCommonDataModel import (
vtkHyperTreeGrid,
vtkHyperTreeGridNonOrientedCursor,
vtkHyperTreeGridNonOrientedGeometryCursor,
vtkHyperTreeGridNonOrientedMooreSuperCursor,
vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor,
vtkHyperTreeGridNonOrientedVonNeumannSuperCursor,
)
ROOT_SPLIT = 10
TARGET_LEVEL = 8
TARGET_LEVEL = 6
CUT_OFF = TARGET_LEVEL
# -----------------------------------------------------------------------------
# Helpers
# -----------------------------------------------------------------------------
def mandelbrotTest(x, y, timeStep=0):
count = 0
cReal = float(x)
cImag = float(y)
zReal = 0.0
zImag = float(timeStep) / 10.0
zReal2 = zReal * zReal
zImag2 = zImag * zImag
v1 = zReal2 + zImag2
while v1 < 4.0 and count < 100:
zImag = 2.0 * zReal * zImag + cImag
zReal = zReal2 - zImag2 + cReal
zReal2 = zReal * zReal
zImag2 = zImag * zImag
count += 1
v1 = zReal2 + zImag2
return count == 100
def mandelbrotSide(bounds):
count = 1
if mandelbrotTest(bounds[0], bounds[2]):
count += 1
if mandelbrotTest(bounds[1], bounds[2]):
count += 1
if mandelbrotTest(bounds[0], bounds[3]):
count += 1
if mandelbrotTest(bounds[1], bounds[3]):
count += 1
return count
def shouldRefine(level, bounds):
if level >= TARGET_LEVEL:
return False
origin = mandelbrotTest(bounds[0], bounds[2])
originX = mandelbrotTest(bounds[1], bounds[2])
originY = mandelbrotTest(bounds[0], bounds[3])
originXY = mandelbrotTest(bounds[1], bounds[3])
canRefine = bounds[4] < 0.01
if canRefine:
if origin and originX and originY and originXY:
return False
if not origin and not originX and not originY and not originXY:
return False
return True
return False
def handleNode(cursor, sideArray, levelArray):
cellBounds = [0, -1, 0, -1, 0, -1]
cursor.GetBounds(cellBounds)
# Add field
idx = cursor.GetGlobalNodeIndex()
side = mandelbrotSide(cellBounds)
sideArray.InsertTuple1(idx, side)
mask.InsertTuple1(idx, side < CUT_OFF)
if cursor.IsLeaf():
if shouldRefine(cursor.GetLevel(), cellBounds):
cursor.SubdivideLeaf()
handleNode(cursor, sideArray, mask)
else:
for childIdx in range(cursor.GetNumberOfChildren()):
cursor.ToChild(childIdx)
handleNode(cursor, sideArray, mask)
cursor.ToParent()
# -----------------------------------------------------------------------------
# Create Simple HTG
# -----------------------------------------------------------------------------
htg = vtkHyperTreeGrid()
htg.Initialize()
htg.SetDimensions(
[ROOT_SPLIT + 1, ROOT_SPLIT + 1, 2]
) # nb cells, not nb points : GridCell [ROOT_SPLIT, ROOT_SPLIT, 1]
htg.SetBranchFactor(2)
sideArray = vtkUnsignedCharArray()
sideArray.SetName("sideArray")
sideArray.SetNumberOfValues(0)
sideArray.SetNumberOfComponents(1)
htg.GetCellData().AddArray(sideArray)
mask = vtkBitArray()
mask.SetName("mask")
# X[-1.75, 0.75]
xValues = vtkDoubleArray()
xValues.SetNumberOfValues(ROOT_SPLIT + 1)
for i in range(ROOT_SPLIT + 1):
xValues.SetValue(i, -1.75 + float(i) * 0.25)
htg.SetXCoordinates(xValues)
# Y[-1.25, 1.25]
yValues = vtkDoubleArray()
yValues.SetNumberOfValues(ROOT_SPLIT + 1)
for i in range(ROOT_SPLIT + 1):
yValues.SetValue(i, -1.25 + float(i) * 0.25)
htg.SetYCoordinates(yValues)
# Z[0, 0]
zValues = vtkDoubleArray()
zValues.SetNumberOfValues(2)
zValues.SetValue(0, 0)
zValues.SetValue(1, 0.25)
htg.SetZCoordinates(zValues)
geoCursor = vtkHyperTreeGridNonOrientedGeometryCursor()
offsetIndex = 0
for treeId in range(htg.GetMaxNumberOfTrees()):
htg.InitializeNonOrientedGeometryCursor(geoCursor, treeId, True)
geoCursor.SetGlobalIndexStart(offsetIndex)
handleNode(geoCursor, sideArray, mask)
offsetIndex += geoCursor.GetTree().GetNumberOfVertices()
print("offsetIndex: ", offsetIndex)
# Squeeze
htg.Squeeze()
# Select an active scalar field
htg.GetCellData().SetActiveScalars("sideArray")
# DataRange sideArray on PointData HTG
dataRange = htg.GetCellData().GetArray("sideArray").GetRange()
print("sideArray on PointData HTG:", dataRange)
print("HTG:", htg.GetNumberOfCells())
# Tests cursors... in Python
# maxDepth allows for testing even unlimited cursors
def recursive(cursor, maxDepth=-1):
if cursor.IsLeaf() or maxDepth == 0:
return 1
nb = 0
for ichild in range(cursor.GetNumberOfChildren()):
cursor.ToChild(ichild)
nb += recursive(cursor, maxDepth - 1)
cursor.ToParent()
return nb
def nonOrientedCursor(htg, expected):
nb = 0
cursor = vtkHyperTreeGridNonOrientedCursor()
for treeId in range(htg.GetMaxNumberOfTrees()):
htg.InitializeNonOrientedCursor(cursor, treeId)
if not cursor.IsMasked():
nb += recursive(cursor)
print("nb: ", nb)
if expected and nb != expected:
print("ERROR Not corresponding expected value")
return nb
expected = nonOrientedCursor(htg, None)
def nonOrientedGeometryCursor(htg, expected):
nb = 0
cursor = vtkHyperTreeGridNonOrientedGeometryCursor()
for treeId in range(htg.GetMaxNumberOfTrees()):
htg.InitializeNonOrientedGeometryCursor(cursor, treeId)
if not cursor.IsMasked():
nb += recursive(cursor)
print("nb: ", nb)
if expected and nb != expected:
print("ERROR Not corresponding expected value")
return nb
nonOrientedGeometryCursor(htg, expected)
def nonOrientedVonNeumannSuperCursor(htg, expected):
nb = 0
cursor = vtkHyperTreeGridNonOrientedVonNeumannSuperCursor()
for treeId in range(htg.GetMaxNumberOfTrees()):
htg.InitializeNonOrientedVonNeumannSuperCursor(cursor, treeId)
if not cursor.IsMasked():
nb += recursive(cursor)
print("nb: ", nb)
if expected and nb != expected:
print("ERROR Not corresponding expected value")
return nb
nonOrientedVonNeumannSuperCursor(htg, expected)
def nonOrientedMooreSuperCursor(htg, expected):
nb = 0
cursor = vtkHyperTreeGridNonOrientedMooreSuperCursor()
for treeId in range(htg.GetMaxNumberOfTrees()):
htg.InitializeNonOrientedMooreSuperCursor(cursor, treeId)
if not cursor.IsMasked():
nb += recursive(cursor)
print("nb: ", nb)
if expected and nb != expected:
print("ERROR Not corresponding expected value")
return nb
nonOrientedMooreSuperCursor(htg, expected)
def nonOrientedUnlimitedMooreSuperCursor(htg):
nb = 0
cursor = vtkHyperTreeGridNonOrientedUnlimitedMooreSuperCursor()
for treeId in range(3):
htg.InitializeNonOrientedUnlimitedMooreSuperCursor(cursor, treeId)
nb += recursive(cursor, 3)
if nb != (3 * 512):
print("ERROR Unexpected value for unlimited cursor")
return nb
nonOrientedUnlimitedMooreSuperCursor(htg)
# Test Find
findx = [
-1.75 + float(ROOT_SPLIT) * 0.5 * 0.25,
-1.75 + float(ROOT_SPLIT) * 0.5 * 0.25,
0.11,
]
print("--------- FindNonOrientedGeometryCursor ---------")
cursor = htg.FindNonOrientedGeometryCursor(findx)
cursor.UnRegister(htg)
bbox = [
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
-1.0,
]
cursor.GetBounds(bbox)
print("bbox: ", bbox)
point = [
-1.0,
-1.0,
-1.0,
]
cursor.GetPoint(point)
print("point: ", point[0], point[1], point[2])
print("IsLeaf: ", cursor.IsLeaf())
assert cursor.IsLeaf()
print(bbox[0], " <= ", findx[0], " and ", findx[0], " <= ", bbox[1])
if bbox[0] <= findx[0] and findx[0] <= bbox[1]:
pass
else:
assert bbox[0] <= findx[0] and findx[0] <= bbox[1]
print(bbox[2], " <= ", findx[1], " and ", findx[1], " <= ", bbox[3])
if bbox[2] <= findx[1] and findx[1] <= bbox[3]:
pass
else:
assert bbox[2] <= findx[1] and findx[1] <= bbox[3]
print(bbox[4], " <= ", findx[2], " and ", findx[2], " <= ", bbox[5])
if bbox[4] <= findx[2] and findx[2] <= bbox[5]:
pass
else:
assert bbox[4] <= findx[2] and findx[2] <= bbox[5]
# --- end of script --
|