File: TestICPTransform.py

package info (click to toggle)
vtk9 9.5.2%2Bdfsg3-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 205,984 kB
  • sloc: cpp: 2,336,570; ansic: 327,116; python: 111,200; yacc: 4,104; java: 3,977; sh: 3,032; xml: 2,771; perl: 2,189; lex: 1,787; makefile: 181; javascript: 165; objc: 153; tcl: 59
file content (142 lines) | stat: -rwxr-xr-x 5,170 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# -*- coding: utf-8 -*-



from vtkmodules.vtkCommonDataModel import vtkIterativeClosestPointTransform
from vtkmodules.vtkFiltersCore import vtkFeatureEdges
from vtkmodules.vtkFiltersSources import vtkSuperquadricSource
from vtkmodules.vtkRenderingCore import (
    vtkActor,
    vtkPolyDataMapper,
    vtkRenderWindow,
    vtkRenderWindowInteractor,
    vtkRenderer,
)
import vtkmodules.vtkInteractionStyle
import vtkmodules.vtkRenderingFreeType
import vtkmodules.vtkRenderingOpenGL2
import vtkmodules.test.Testing
from vtkmodules.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()

class TestICPTransform(vtkmodules.test.Testing.vtkTest):

    def testICPTransform(self):

        renWin = vtkRenderWindow()

        #iren = vtkRenderWindowInteractor()
        #iren.SetRenderWindow(renWin)

        # Create objects

        sscale = {2:[0.7, 0.7, 0.7],
                  3:[0.5, 0.5, 0.5]}
        scenter = {2:[-0.25, 0.25, 0.0],
                   3:[ 0.4, -0.3, 0.0]}
        scolors = {2:[0.2, 0.6, 0.1],
                   3:[0.1, 0.2, 0.6]}

        s = dict() # The super quadric sources

        for sidx in range(1, 4):
            s.update({sidx:vtkSuperquadricSource()})
            s[sidx].ToroidalOff()
            s[sidx].SetThetaResolution(20)
            s[sidx].SetPhiResolution(20)
            s[sidx].SetPhiRoundness(0.7 + (sidx - 2) * 0.4)
            s[sidx].SetThetaRoundness(0.85 + (sidx - 1) * 0.4)
            if sidx in sscale:
                s[sidx].SetScale(sscale[sidx])
            if sidx in scenter:
                s[sidx].SetCenter(scenter[sidx])

            s[sidx].Update()

        ren = dict() # Renderers
        sm = dict() # Mappers for the super quadric source
        sa = dict() # Actors for the super quadric source
        fe = dict() # Feature edges
        fem = dict() # Feature edges mappers
        fea = dict() # Feature edges actors
        icp = dict() # Iterated closest point transforms

        # Create the renderers

        for ridx in range(1, 4):
            ren.update({ridx: vtkRenderer()})
            ren[ridx].SetViewport((ridx - 1) / 3.0, 0.0, ridx / 3.0, 1.0)
            ren[ridx].SetBackground(0.7, 0.8, 1.0)
            cam = ren[ridx].GetActiveCamera()
            cam.SetPosition(1.7, 1.4, 1.7)
            renWin.AddRenderer(ren[ridx])

            # renderer 1 has all 3 objects, render i has object 1 and i (i=2, 3)
            # add actors (corresponding to the objects) to each renderer
            # and ICP transforms from objects i or to 1.
            # object 1 has feature edges too.

            for sidx in range(1, 4):

                if ridx == 1 or sidx == 1 or ridx == sidx:
                    sm.update({ridx:{sidx:vtkPolyDataMapper()}})
                    sm[ridx][sidx].SetInputConnection(s[sidx].GetOutputPort())

                    sa.update({ridx:{sidx:vtkActor()}})
                    sa[ridx][sidx].SetMapper(sm[ridx][sidx])

                    prop = sa[ridx][sidx].GetProperty()
                    if sidx in scolors:
                        prop.SetColor(scolors[sidx])

                    if sidx == 1:
                        prop.SetOpacity(0.2)

                        fe.update({ridx:{sidx:vtkFeatureEdges()}})
                        src = s[sidx]
                        fe[ridx][sidx].SetInputConnection(src.GetOutputPort())
                        fe[ridx][sidx].BoundaryEdgesOn()
                        fe[ridx][sidx].ColoringOff()
                        fe[ridx][sidx].ManifoldEdgesOff()

                        fem.update({ridx:{sidx:vtkPolyDataMapper()}})
                        fem[ridx][sidx].SetInputConnection(fe[ridx][sidx].GetOutputPort())
                        fem[ridx][sidx].SetResolveCoincidentTopologyToPolygonOffset()

                        fea.update({ridx:{sidx:vtkActor()}})
                        fea[ridx][sidx].SetMapper(fem[ridx][sidx])

                        ren[ridx].AddActor(fea[ridx][sidx])


                    ren[ridx].AddActor(sa[ridx][sidx])


                if ridx > 1 and ridx == sidx:
                    icp.update({ridx:{sidx:vtkIterativeClosestPointTransform()}})
                    icp[ridx][sidx].SetSource(s[sidx].GetOutput())
                    icp[ridx][sidx].SetTarget(s[1].GetOutput())
                    icp[ridx][sidx].SetCheckMeanDistance(1)
                    icp[ridx][sidx].SetMaximumMeanDistance(0.001)
                    icp[ridx][sidx].SetMaximumNumberOfIterations(30)
                    icp[ridx][sidx].SetMaximumNumberOfLandmarks(50)
                    sa[ridx][sidx].SetUserTransform(icp[ridx][sidx])


        icp[3][3].StartByMatchingCentroidsOn()

        renWin.SetSize(400, 100)

        # render and interact with data

        iRen = vtkRenderWindowInteractor()
        iRen.SetRenderWindow(renWin);
        renWin.Render()

        img_file = "TestICPTransform.png"
        vtkmodules.test.Testing.compareImage(iRen.GetRenderWindow(), vtkmodules.test.Testing.getAbsImagePath(img_file))
        vtkmodules.test.Testing.interact()

if __name__ == "__main__":
     vtkmodules.test.Testing.main([(TestICPTransform, 'test')])